Chari S, Qi M, Agu NN, Seneviratne O, McCusker JP, Bennett KP, et al. Enabling trust in clinical decision support recommendations through semantics. Semantic web solutions for large-scale biomedical data analytics workshop at the International Semantic Web Conference. 2019. https://ceur-ws.org/Vol-2477/paper_5.pdf.
Hasnain A, Novacek V, Dumontier M, Rebholz-Schuhmann D. Semantic Web solutions for large-scale biomedical data analytics (SeWeBMeDA-2019), Workshop at ISWC 2019, 27th October Auckland New Zealand. 2019. https://sites.google.com/view/sewebmeda-2019. Accessed 22 Apr 2021.
Fox J, Johns N, Rahmanzadeh A, Thomson R. PROforma: a method and language for specifying clinical guidelines and protocols. Studies in Health Technology and Informatics. 1996. p. 516–20. https://ebooks.iospress.nl/doi/10.3233/978-1-60750-878-6-516.
Tu SW, Musen MA. The EON model of intervention protocols and guidelines. In: Proceedings of the AMIA Annual Fall Symposium. American Medical Informatics Association; 1996. p. 587.
Johnson PD, Tu S, Booth N, Sugden B, Purves IN. Using scenarios in chronic disease management guidelines for primary care. In: Proceedings of the AMIA Symposium. American Medical Informatics Association; 2000. p. 389.
Fuchsberger C, Hunter J, McCue P. Testing Asbru guidelines and protocols for neonatal intensive care. In: Conference on Artificial Intelligence in Medicine in Europe. Springer; 2005. p. 101–110.
Wang D, Shortliffe EH. GLEE–a model-driven execution system for computer-based implementation of clinical practice guidelines. In: Proceedings of the AMIA Symposium. American Medical Informatics Association; 2002. p. 855.
Terenziani P, Montani S, Bottrighi A, Torchio M, Molino G, Correndo G. The GLARE approach to clinical guidelines: main features. Studies in health technology and informatics; 2004. p. 162–6. https://ebooks.iospress.nl/volumearticle/20775.
Tu SW, Campbell JR, Glasgow J, Nyman MA, McClure R, McClay J, et al. The SAGE Guideline Model: achievements and overview. J Am Med Inform Assoc. 2007;14(5):589–98.
Peleg M, Boxwala AA, Ogunyemi O, Zeng Q, Tu S, Lacson R, et al. GLIF3: the evolution of a guideline representation format. In: Proceedings of the AMIA Symposium. American Medical Informatics Association; 2000. p. 645.
Fox J, Gutenstein M, Khan O, South M, Thomson R. OpenClinical.net: A platform for creating and sharing knowledge and promoting best practice in healthcare. Comput Ind. 2015;66:63–72.
Goldstein MK, Hoffman BB, Coleman RW, Tu SW, Shankar RD, O’Connor M, et al. Patient safety in guideline-based decision support for hypertension management: ATHENA DSS. J Am Med Inform Assoc. 2002;9(Supplement_6):S11–S16.
Séroussi B, Guézennec G, Lamy JB, Muro N, Larburu N, Sekar BD, et al. Reconciliation of multiple guidelines for decision support: a case study on the multidisciplinary management of breast cancer within the DESIREE project. In: AMIA Annual Symposium Proceedings. vol. 2017. American Medical Informatics Association; 2017. p. 1527.
Robert McNutt M, Nortin Hadler M. How Clinical Guidelines Can Fail Both Doctors and Patients. 2014. https://thehealthcareblog.com/blog/2014/01/30/how-clinical-guidelines-can-fail-both-doctors-and-patients. Accessed 04 Jan 2020.
Peter Edelstein M. Why aren’t all physicians using clinical practice guidelines? 2016. https://www.elsevier.com/connect/why-arent-all-physicians-using-clinical-practice-guidelines. Accessed 04 Jan 2020.
Bryn Nelson P. Why Aren’t Doctors Following Guidelines? 2016. https://www.the-hospitalist.org/hospitalist/article/121436/why-arent-doctors-following-guidelines. Accessed 04 Jan 2020.
Graham R, Mancher M, Wolman DM, Greenfield S, Steinberg E. Trustworthy clinical practice guidelines: challenges and potential. In: Clinical Practice Guidelines We Can Trust 2011. National Academies Press (US); 2011.
Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PAC, et al. Why don’t physicians follow clinical practice guidelines?: A framework for improvement. JAMA. 1999;282(15):1458–65.
Tsiga E, Panagopoulou E, Sevdalis N, Montgomery A, Benos A. The influence of time pressure on adherence to guidelines in primary care: an experimental study. BMJ Open. 2013;3(4): e002700.
Lomas J, Anderson GM, Domnick-Pierre K, Vayda E, Enkin MW, Hannah WJ. Do practice guidelines guide practice? N Engl J Med. 1989;321(19):1306–11.
Carthey J, Walker S, Deelchand V, Vincent C, Griffiths WH. Breaking the rules: understanding non-compliance with policies and guidelines. BMJ. 2011;343: d5283.
Hoesing H. Clinical practice guidelines: Closing the gap between theory and practice. Oakbrook Terrace: Joint Commission International; 2016.
Morgott M, Heinmüller S, Hueber S, Schedlbauer A, Kühlein T. Do guidelines help us to deviate from their recommendations when appropriate for the individual patient? A systematic survey of clinical practice guidelines. J Eval Clin Pract. 2020;26(3):709–17.
Dissanayake PI, Colicchio TK, Cimino JJ. Using clinical reasoning ontologies to make smarter clinical decision support systems: a systematic review and data synthesis. J Am Med Inform Assoc. 2019;27(1):159–74.
Kesselheim AS, Cresswell K, Phansalkar S, Bates DW, Sheikh A. Clinical decision support systems could be modified to reduce ‘alert fatigue’ while still minimizing the risk of litigation. Health Aff. 2011;30(12):2310–7.
Barth JH, Misra S, Aakre KM, Langlois MR, Watine J, Twomey PJ, et al. Why are clinical practice guidelines not followed? Clin Chem Lab Med (CCLM). 2016;54(7):1133–9.
American Diabetes Association. Introduction: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S1–2. https://doi.org/10.2337/dc20-Sint.
Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B. Diabetes mellitus and breast cancer. Lancet Oncol. 2005;6(2):103–11.
Kang C, LeRoith D, Gallagher EJ. Diabetes, obesity, and breast cancer. Endocrinology. 2018;159(11):3801–12.
Beahrs OH, Henson DE, Hutter RV, Myers MH. Manual for staging of cancer. Am J Clin Oncol. 1988;11(6):686.
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–99.
Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–1474.
Massicano F, Sasso A, Tomaz H, Oleynik M, Nobrega C, Patrao DF. An ontology for TNM clinical stage inference. In: ONTOBRAS; 2015. http://repositorio.ipen.br/bitstream/handle/123456789/25792/21722.pdf?sequence=1.
Boeker M, França F, Bronsert P, Schulz S. TNM-O: ontology support for staging of malignant tumours. J Biomed Semant. 2016;7(1):64.
Singletary SE, Greene FL, Sobin LH. Classification of isolated tumor cells. Cancer. 2003;98(12):2740–1.
Beierle C, Sader B, Eichhorn C, Kern-Isberner G, Meyer RG, Nietzke M, On the Ontological Modelling of Co-medication and Drug Interactions in Medical Cancer Therapy Regimens for a Clinical Decision Support System. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE; 2017. p. 105–10.
Kim HL, Puymon MR, Qin M, Guru K, Mohler JL. NCCN clinical practice guidelines in oncology™. J Natl Compr Cancer Netw. 2013. http://www.nccn.org/professionals/physician_gls/PDF/occult.pdf.
Seneviratne O, Rashid SM, Chari S, McCusker JP, Bennett KP, Hendler JA, et al. Knowledge Integration for Disease Characterization: A Breast Cancer Example. In: International Semantic Web Conference. Springer; 2018. p. 223–238.
Golbeck J, Fragoso G, Hartel F, Hendler J, Oberthaler J, Parsia B. The National Cancer Institute’s thesaurus and ontology. Web Semant Sci Serv Agents World Wide Web. 2011;1(1). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3199007.
Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017;49(2):170.
Lebo T, Sahoo S, McGuinness D, Belhajjame K, Cheney J, Corsar D, et al. Prov-o: the prov ontology. W3C Recomm. 2013;30. http://www.w3.org/TR/2013/REC-prov-o-20130430.
Kunze J, Baker T. The Dublin core metadata element set (No. rfc5013). 2007.
Dabrowski M, Synak M, Kruk SR. Bibliographic ontology. In: Semantic digital libraries. Springer; 2009. p. 103–122.
Valdez J, Kim M, Rueschman M, Socrates V, Redline S, Sahoo SS. ProvCaRe semantic provenance knowledgebase: evaluating scientific reproducibility of research studies. In: AMIA Annual Symposium Proceedings. vol. 2017. American Medical Informatics Association; 2017. p. 1705.
Sahoo SS, Bodenreider O, Hitzler P, Sheth A, Thirunarayan K. Provenance Context Entity (PaCE): Scalable provenance tracking for scientific RDF data. In: International Conference on Scientific and Statistical Database Management. Springer; 2010. p. 461–470.
Kifor T, Varga LZ, Vazquez-Salceda J, Alvarez S, Willmott S, Miles S, et al. Provenance in agent-mediated healthcare systems. IEEE Intell Syst. 2006;21(6):38–46.
Deora V, Contes A, Rana OF, Rajbhandari S, Wootten I, Tamas K, et al. Navigating provenance information for distributed healthcare management. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society; 2006. p. 859–865.
Álvarez S, Vázquez-Salceda J, Kifor T, Varga LZ, Willmott S. Applying provenance in distributed organ transplant management. In: International Provenance and Annotation Workshop. Springer; 2006. p. 28–36.
Xu S, Rogers T, Fairweather E, Glenn A, Curran J, Curcin V. Application of data provenance in healthcare analytics software: information visualisation of user activities. AMIA Summits Transl Sci Proc. 2018;2017:263.
Galopin A, Bouaud J, Pereira S, Séroussi B. An ontology-based clinical decision support system for the management of patients with multiple chronic disorders. In: MedInfo; 2015. p. 275–9. https://ebooks.iospress.nl/pdf/doi/10.3233/978-1-61499-564-7-275.
Sherimon P, Krishnan R. OntoDiabetic: an ontology-based clinical decision support system for diabetic patients. Arab J Sci Eng. 2016;41(3):1145–60.
Agu NN, Keshan N, Chari S, Seneviratne O, McCusker JP, McGuinness DL. G-PROV: provenance management for clinical practice guidelines. In: SeWeBMeDa@ ISWC; 2019. p. 68–75. https://ceur-ws.org/Vol-2477/paper_6.pdf.
Dumontier M, Baker CJ, Baran J, Callahan A, Chepelev L, Cruz-Toledo J, et al. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. J Biomed Semant. 2014;5(1):14.
Schriml LM, Arze C, Nadendla S, Chang YWW, Mazaitis M, Felix V, et al. Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res. 2011;40(D1):D940–6.
Chari S, Qi M, Agu NN, Seneviratne O, McCusker JP, Bennett KP, et al. Making study populations visible through knowledge graphs. In: International Semantic Web Conference. Springer; 2019. p. 53–68.
Sim I, Tu SW, Carini S, Lehmann HP, Pollock BH, Peleg M, et al. The Ontology of Clinical Research (OCRe): an informatics foundation for the science of clinical research. J Biomed Inform. 2014;52:78–91.
Tu SW, Peleg M, Carini S, Bobak M, Ross J, Rubin D, et al. A practical method for transforming free-text eligibility criteria into computable criteria. J Biomed Inform. 2011;44(2):239–50.
Younesi E. A Knowledge-based Integrative Modeling Approach for In-Silico Identification of Mechanistic Targets in Neurodegeneration with Focus on Alzheimer’s Disease. Department of Mathematics and Natural Sciences. Bonn: Universitäts-und Landesbibliothek Bonn; 2014.
Shankar RD, Martins SB, O’Connor MJ, Parrish DB, Das AK. Epoch: an ontological framework to support clinical trials management. In: Proc. Int. Workshop on Healthcare Inf. and Knowl. Manage. Arlington: ACM; 2006. p. 25–32.
Patel C, Cimino J, Dolby J, Fokoue A, Kalyanpur A, Kershenbaum A, et al. Matching patient records to clinical trials using ontologies. In: The Semantic Web. Busan: Springer; 2007. p. 816–829.
Liu H, Li X, Xie G, Du X, Zhang P, Gu C, et al. Precision cohort finding with outcome-driven similarity analytics: a case study of patients with Atrial fibrillation. In: MedInfo; 2017. p. 491–5. https://ebooks.iospress.nl/pdf/doi/10.3233/978-1-61499-830-3-491.
Gonzalez-Beltran A, Rocca-Serra P. Statistical Methods Ontology. https://bioportal.bioontology.org/ontologies/STATO. Accessed 04 Jan 2020.
Gkoutos G. Units of Measurement Ontology. https://bioportal.bioontology.org/ontologies/UO. Accessed 04 Jan 2020.
Pinheiro P. Human-Aware Science Ontology. https://bioportal.bioontology.org/ontologies/HASCO. Accessed 04 Jan 2020.
Smith J, Shimoyama M. Clinical Measurement Ontology. https://bioportal.bioontology.org/ontologies/CMO. Accessed 04 Jan 2020.
Stingone J, Pinheiro P, Meola J, McCusker J, Bengoa S, Kovatch P, et al. The CHEAR Data Repository: Facilitating children’s environmental health and exposome research through data harmonization, pooling and accessibility. Environ Epidemiol. 2019;3:382.
McCusker JP, Rashid SM, Liang Z, Liu Y, Chastain K, Pinheiro P, et al. Broad, Interdisciplinary Science In Tela: An Exposure and Child Health Ontology. In: Proceedings of the 2017 ACM on Web Science Conference. ACM; 2017. p. 349–357.
McCusker J, McGuinness D, Masters J, Pinheiro P. Human Health Exposure Analysis Resource. 2021. https://bioportal.bioontology.org/ontologies/HHEAR. Accessed 11 Feb 2021
Gkoutos G. Phenotypic Quality Ontology. https://bioportal.bioontology.org/ontologies/PATO. Accessed 04 Jan 2020.
Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, et al. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res. 2019;47(D1):D955–62.
Veres C. Aggregation in ontologies: Practical implementations in OWL. In: International Conference on Web Engineering. Springer; 2005. p. 285–295.
Severi P, Fiadeiro J, Ekserdjian D. Guiding reification in owl through aggregation. In: 23rd International Workshop on Description Logics DL2010; 2010. p. 408. https://ceur-ws.org/Vol-573/dl2010.pdf#page=416.
Severi P, Fiadeiro J, Ekserdjian D. Guiding the representation of n-ary relations in ontologies through aggregation, generalisation and participation. Web Semant Sci Serv Agents World Wide Web. 2011;9(2):83–98.
McCusker JP, Dumontier M, Chari S, Luciano J, McGuinness D. A linked data representation for summary statistics and grouping criteria. Semstats 2019 Workshop at International Semantic Web Conference. https://ceur-ws.org/Vol-2549/article-04.pdf.
Bechhofer S, Van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF, et al. OWL web ontology language reference. W3C Recomm. 2004;10(02). http://www.w3.org/TR/owl-ref/2004.
Franklin JDS, Chari S, Foreman MA, Seneviratne O, Gruen DM, McCusker JP, et al. Knowledge Extraction of Cohort Characteristics in Research Publications. In: Proceedings of 2020 AMIA Annual Symposium. American Medical Informatics Association.
Staar PW, Dolfi M, Auer C, Bekas C. Corpus Conversion Service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM; 2018. p. 774–782.
Jonquet C, Shah N, Youn C, Callendar C, Storey MA, Musen M. NCBO annotator: semantic annotation of biomedical data. In: International Semantic Web Conference, Poster and Demo session, vol. 110. 2009. https://www.lirmm.fr/~jonquet/publications/documents/Demo-ISWC09-Jonquet.pdf.
Seneviratne O. Cancer Staging Terms Ontology. 2018. https://bioportal.bioontology.org/ontologies/CST. Accessed 22 Apr 2021.
Seneviratne O. Breast Cancer Staging Ontology - seventh edition. 2018. http://bioportal.bioontology.org/ontologies/BCS7. Accessed 22 Apr 2021.
Seneviratne O. Breast Cancer Staging Ontology - eighth edition. 2018. http://bioportal.bioontology.org/ontologies/BCS8. Accessed 22 Apr 2021.
McCusker JP. Whyis: nano-scale knowledge graph publishing, management, and analysis framework. GitHub. 2018. https://github.com/tetherless-world/whyis/. Accessed 14 Jul 2023.
Groth P, Gibson A, Velterop J. The anatomy of a nanopublication. Inf Serv Use. 2010;30(1–2):51–6.
Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist. 2007;12(1):20–37.
Surveillance Research Program (SRP). National Cancer Institute’s Division of Cancer Control and Population Sciences (DCCPS): SEER*Stat Software. 2018. https://seer.cancer.gov/seerstat. Accessed 22 Apr 2021.
Seneviratne O. Knowledge Integration for Breast Cancer Characterization. 2018. https://cancer-staging-ontology.github.io. Accessed 22 Apr 2021.
McCusker JP. Whyis: a nano-scale knowledge graph framework. 2017. http://tetherless-world.github.io/whyis. Accessed 22 Apr 2021.
Agu N, Seneviratne O. Guideline Provenance Ontology. 2019. https://bioportal.bioontology.org/ontologies/G-PROV. Accessed 22 Apr 2021.
El-Sappagh S, Kwak D, Ali F, Kwak KS. DMTO: a realistic ontology for standard diabetes mellitus treatment. J Biomed Semant. 2018;9(1):8.
Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M, et al. SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission. 2004;21(79). https://www.w3.org/Submission/SWRL.
Diabetes Canada. Diabetes Guidelines. http://guidelines.diabetes.ca/cpg. Accessed 04 Jan 2020.
European Association for the Study of Diabetes. Diabetes Guidel. https://www.easd.org/statements.html. Accessed 04 Jan 2020.
American Diabetes Association. Introduction: Standards of Medical Care in Diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S1–2. https://doi.org/10.2337/dc18-Sint01.
Comments (0)