Menges D, Ballouz T, Anagnostopoulos A, Aschmann HE, Domenghino A, Fehr JS, et al. Burden of post-COVID-19 syndrome and implications for healthcare service planning: a population-based cohort study. PLoS One. 2021;16(7):e0254523.
Article CAS PubMed PubMed Central Google Scholar
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. https://doi.org/10.1038/s41591-021-01283-z.
Article CAS PubMed PubMed Central Google Scholar
Nguyen NN, Hoang VT, Dao TL, Dudouet P, Eldin C, Gautret P. Clinical patterns of somatic symptoms in patients suffering from post-acute long COVID: a systematic review. Eur J Clin Microbiol Infect Dis. 2022;41(4):515–45. https://doi.org/10.1007/s10096-022-04417-4.
Article CAS PubMed PubMed Central Google Scholar
Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90. https://doi.org/10.1038/s41591-022-01689-3.
Article CAS PubMed PubMed Central Google Scholar
Moreno-Pérez O, Merino E, Leon-Ramirez J-M, Andres M, Ramos JM, Arenas-Jiménez J, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021;82(3):378–83. https://doi.org/10.1016/j.jinf.2021.01.004.
Article CAS PubMed PubMed Central Google Scholar
Meringer H, Mehandru S. Gastrointestinal post-acute COVID-19 syndrome. Nat Rev Gastroenterol Hepatol. 2022;19(6):345–6. https://doi.org/10.1038/s41575-022-00611-z.
Article CAS PubMed PubMed Central Google Scholar
Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2022;10(5):311–21. https://doi.org/10.1016/s2213-8587(22)00044-4.
Article CAS PubMed PubMed Central Google Scholar
Haider S, Janowski AJ, Lesnak JB, Hayashi K, Dailey DL, Chimenti R, et al. A comparison of pain, fatigue, and function between post-COVID-19 condition, fibromyalgia, and chronic fatigue syndrome: a survey study. Pain. 2023;164(2):385–401. https://doi.org/10.1097/j.pain.0000000000002711.
Zhang H, Zang C, Xu Z, Zhang Y, Xu J, Bian J, et al. Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes. Nat Med. 2023;29(1):226–35. https://doi.org/10.1038/s41591-022-02116-3.
Article CAS PubMed Google Scholar
Gong WY, Abdelhamid RE, Carvalho CS, Sluka KA. Resident macrophages in muscle contribute to development of hyperalgesia in a mouse model of noninflammatory muscle pain. J Pain. 2016;17(10):1081–94. https://doi.org/10.1016/j.jpain.2016.06.010.
Article CAS PubMed PubMed Central Google Scholar
Gregory NS, Brito RG, Fusaro MC, Sluka KA. ASIC3 is required for development of fatigue-induced hyperalgesia. Mol Neurobiol. 2016;53(2):1020–30. https://doi.org/10.1007/s12035-014-9055-4.
Article CAS PubMed Google Scholar
de Azambuja G, Jorge CO, Gomes BB, Lourenço HR, Simabuco FM, Oliveira-Fusaro MCG. Regular swimming exercise prevented the acute and persistent mechanical muscle hyperalgesia by modulation of macrophages phenotypes and inflammatory cytokines via PPARγ receptors. Brain Behav Immun. 2021;95:462–76. https://doi.org/10.1016/j.bbi.2021.05.002.
Article CAS PubMed Google Scholar
Hayashi K, Lesnak JB, Plumb AN, Rasmussen LA, Sluka KA. P2X7-NLRP3-Caspase-1 signaling mediates activity-induced muscle pain in male but not female mice. Pain. 2023. https://doi.org/10.1097/j.pain.0000000000002887.
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an emerging target for chronic pain therapy. Front Mol Neurosci. 2019;12:216. https://doi.org/10.3389/fnmol.2019.00216.
Article CAS PubMed PubMed Central Google Scholar
Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells. 2018;7(10). https://doi.org/10.3390/cells7100161.
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183–96. https://doi.org/10.1016/j.immuni.2017.02.006.
Article CAS PubMed PubMed Central Google Scholar
Zhu W, Zhang X, Jiang Y, Liu X, Huang L, Wei Q, et al. Alterations in peripheral T cell and B cell subsets in patients with osteoarthritis. Clin Rheumatol. 2020;39(2):523–32. https://doi.org/10.1007/s10067-019-04768-y.
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. https://doi.org/10.1038/nrrheum.2010.196.
Article CAS PubMed Google Scholar
Teodorczyk-Injeyan JA, McGregor M, Triano JJ, Injeyan SH. Elevated production of nociceptive CC chemokines and sE-selectin in patients with low back pain and the effects of spinal manipulation: a nonrandomized clinical trial. Clin J Pain. 2018;34(1):68–75. https://doi.org/10.1097/ajp.0000000000000507.
Merriwether EN, Agalave NM, Dailey DL, Rakel BA, Kolker SJ, Lenert ME, et al. IL-5 mediates monocyte phenotype and pain outcomes in fibromyalgia. Pain. 2021;162(5):1468–82. https://doi.org/10.1097/j.pain.0000000000002089.
Article CAS PubMed Google Scholar
Uçeyler N, Häuser W, Sommer C. Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet Disord. 2011;12:245. https://doi.org/10.1186/1471-2474-12-245.
Article CAS PubMed PubMed Central Google Scholar
Bäckryd E, Tanum L, Lind AL, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J Pain Res. 2017;10:515–25. https://doi.org/10.2147/jpr.S128508.
Article PubMed PubMed Central Google Scholar
Imamura M, Targino RA, Hsing WT, Imamura S, Azevedo RS, Boas LS, et al. Concentration of cytokines in patients with osteoarthritis of the knee and fibromyalgia. Clin Interv Aging. 2014;9:939–44. https://doi.org/10.2147/cia.S60330.
Article PubMed PubMed Central Google Scholar
Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science (New York, NY). 2016;354(6312):572–7. https://doi.org/10.1126/science.aaf8924.
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, et al. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal. 2021;14(674). https://doi.org/10.1126/scisignal.abe1648.
Arunachalam PS, Wimmers F, Mok CKP, Perera R, Scott M, Hagan T, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science (New York, NY). 2020;369(6508):1210–20. https://doi.org/10.1126/science.abc6261.
Krämer B, Knoll R, Bonaguro L, ToVinh M, Raabe J, Astaburuaga-García R, et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity. 2021;54(11):2650-69.e14. https://doi.org/10.1016/j.immuni.2021.09.002.
Article CAS PubMed PubMed Central Google Scholar
Qi F, Zhang W, Huang J, Fu L, Zhao J. Single-cell RNA sequencing analysis of the immunometabolic rewiring and immunopathogenesis of coronavirus disease 2019. Front Immunol. 2021;12:651656. https://doi.org/10.3389/fimmu.2021.651656.
Article CAS PubMed PubMed Central Google Scholar
Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell. 2020;182(6):1401-18.e18. https://doi.org/10.1016/j.cell.2020.08.002.
Article CAS PubMed PubMed Central Google Scholar
Xu G, Qi F, Li H, Yang Q, Wang H, Wang X, et al. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov. 2020;6:73. https://doi.org/10.1038/s41421-020-00225-2.
Article CAS PubMed PubMed Central Google Scholar
Tavares-Ferreira D, Shiers S, Ray PR, Wangzhou A, Jeevakumar V, Sankaranarayanan I, et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci Transl Med. 2022;14(632):eabj8186. https://doi.org/10.1126/scitranslmed.abj8186.
Article CAS PubMed PubMed Central Google Scholar
McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416(6876):52–8. https://doi.org/10.1038/nature719.
Article CAS PubMed Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128. https://doi.org/10.1186/1471-2105-14-128.
Article PubMed PubMed Central Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. https://doi.org/10.1093/nar/gkw377.
Comments (0)