Ayers MC, Sherman ZN, Gallagher JEG (2020) Oxidative stress responses and nutrient starvation in MCHM treated saccharomyces cerevisiae. G3 Genes. Genomes, Genet 10:4665–4678. https://doi.org/10.1534/g3.120.401661
Barney JB, Winans MJ, Blackwood CB et al (2020) The yeast atlas of appalachia: species and phenotypic diversity of herbicide resistance in wild yeast. Diversity 12:139. https://doi.org/10.3390/d12040139
Baucom RS, Mauricio R (2004) Fitness costs and benefits of novel herbicide tolerance in a noxious weed. Proc Natl Acad Sci U S A 101:13386–13390
Article CAS PubMed PubMed Central Google Scholar
Baucom RS, Mauricio R (2008) Constraints on the evolution of tolerance to herbicide in the common morning glory: resistance and tolerance are mutually exclusive. Evolution 62:2842–2854. https://doi.org/10.1111/J.1558-5646.2008.00514.X
Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:1–15. https://doi.org/10.1186/S12302-016-0070-0
Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456. https://doi.org/10.1002/ps.1512
Brachmann CB, Davies A, Cost GJ et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115::AID-YEA204%3e3.0.CO;2-2
Article CAS PubMed Google Scholar
Brand RM, Mueller C (2002) Transdermal penetration of atrazine, alachlor, and trifluralin: effect of formulation. Toxicol Sci 68:18–23. https://doi.org/10.1093/TOXSCI/68.1.18
Article CAS PubMed Google Scholar
Brewster DW, Warren JA, Hopkins WE (1991) Metabolism of glyphosate in Sprague-Dawley rats: tissue distribution, identification, and quantitation of glyphosate-derived materials following a single oral dose. Fundam Appl Toxicol 17:43–51. https://doi.org/10.1016/0272-0590(91)90237-X
Article CAS PubMed Google Scholar
Broeks MH, van Karnebeek CDM, Wanders RJA et al (2021) Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 44:792–808. https://doi.org/10.1002/JIMD.12402
Article CAS PubMed PubMed Central Google Scholar
Brown J, Sherlock G, Myers C (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst. https://doi.org/10.1038/msb4100043
Chen Y, Chen WJ, Huang Y et al (2022) Insights into the microbial degradation and resistance mechanisms of glyphosate. Environ Res 215:114153. https://doi.org/10.1016/J.ENVRES.2022.114153
Article CAS PubMed Google Scholar
Comai L, Sen LC, Stalker DM et al (1983) An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221:370–371. https://doi.org/10.1126/science.221.4608.370
Article CAS PubMed Google Scholar
Cubillos FA, Brice C, Molinet J et al (2017) Identification of nitrogen consumption genetic variants in yeast through QTL mapping and bulk segregant RNA-Seq analyses. G3 (bethesda) 7:1693–1705. https://doi.org/10.1534/G3.117.042127
Article CAS PubMed Google Scholar
de Brito RL, Gonçalves Costa G, Lundgren Thá E et al (2019) Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutat Res Toxicol Environ Mutagen 842:94–101. https://doi.org/10.1016/J.MRGENTOX.2019.05.002
Debban CL, Okum S, Pieper KE et al (2015) An examination of fitness costs of glyphosate resistance in the common morning glory. Ipomoea Purpurea Ecol Evol 5:5284. https://doi.org/10.1002/ECE3.1776
Defarge N, Spiroux de Vendômois J, Séralini GE (2018) Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Reports 5:156–163. https://doi.org/10.1016/J.TOXREP.2017.12.025
Délye C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176–187. https://doi.org/10.1002/PS.3318
Duke SO (2018) The history and current status of glyphosate. Pest Manag Sci 74:1027–1034. https://doi.org/10.1002/ps.4652
Article CAS PubMed Google Scholar
Duke SO, Lydon J, Koskinen WC et al (2012) Glyphosate Effects onPlant Mineral Nutrition, CropRhizosphere Microbiota, and Plant Disease in Glyphosate-ResistantCrops. J Agric Food Chem 60:10375. https://doi.org/10.1021/JF302436U
Article CAS PubMed PubMed Central Google Scholar
Eskes E, Deprez MA, Wilms T, Winderickx J (2018) pH homeostasis in yeast; the phosphate perspective. Curr Genet 64:155–161. https://doi.org/10.1007/S00294-017-0743-2/FIGURES/1
Article CAS PubMed Google Scholar
Fernández-Escalada M, Gil-Monreal M, Zabalza A, Royuela M (2016) Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations. J Agric Food Chem 64:95–106. https://doi.org/10.1021/ACS.JAFC.5B04916/ASSET/IMAGES/LARGE/JF-2015-04916J_0007.JPEG
Gaines TA, Zhang W, Wang D et al (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci U S A 107:1029–1034. https://doi.org/10.1073/PNAS.0906649107
Article CAS PubMed Google Scholar
Gallagher JEG, Zheng W, Rong X et al (2014) Divergence in a master variator generates distinct phenotypes and transcriptional responses. Genes Dev 28:409–421. https://doi.org/10.1101/gad.228940.113
Article CAS PubMed PubMed Central Google Scholar
Gillezeau C, Van Gerwen M, Shaffer RM et al (2019) The evidence of human exposure to glyphosate: a review. Environ Heal A Glob Access Sci Source 18:1–14. https://doi.org/10.1186/S12940-018-0435-5/FIGURES/3
Glass RL (1984) Metal Complex Formation by Glyphosate. J Agric Food Chem 32:41
González A, Larroy C, BioscaAriño J JA (2008) Use of the TRP1 auxotrophic marker for gene disruption and phenotypic analysis in yeast: a note of warning. FEMS Yeast Res 8:2–5. https://doi.org/10.1111/j.1567-1364.2007.00315.x
Article CAS PubMed Google Scholar
Grau D, Grau N, Gascuel Q et al (2022) Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ Sci Pollut Res 29:32882–32893. https://doi.org/10.1007/S11356-021-18110-0/TABLES/9
Guan W, Jiang H, Guo X et al (2010) Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen. PLoS ONE 5:e11309
Article PubMed PubMed Central Google Scholar
Hatakeyama R, Kamiya M, Takahara T, Maeda T (2010) Endocytosis of the aspartic acid/glutamic acid transporter Dip5 is triggered by substrate-dependent recruitment of the Rsp5 ubiquitin ligase via the arrestin-like protein Aly2. Mol Cell Biol 30:5598–5607. https://doi.org/10.1128/MCB.00464-10
Article CAS PubMed PubMed Central Google Scholar
Hertel R, Gibhardt J, Martienssen M et al (2021) Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol 23:2891–2905. https://doi.org/10.1111/1462-2920.15534
Article CAS PubMed Google Scholar
Hori Y, Fujisawa M, Shimada K, Hirose Y (2003) Determination of the herbicide glyphosate and its metabolite in biological specimens by gas chromatography-mass spectrometry. a case of poisoning by roundup herbicide. J Anal Toxicol 27:162–166. https://doi.org/10.1093/JAT/27.3.162
Article CAS PubMed Google Scholar
Huch M, Stoll DA, Kulling SE, Soukup ST (2021) Metabolism of glyphosate by the human fecal microbiota. Toxicol Lett 358:1–5. https://doi.org/10.1016/J.TOXLET.2021.12.013
Jalal A, Oliveira Junior JC, de, Ribeiro JS, et al (2021) Hormesis in plants: physiological and biochemical responses. Ecotoxicol Environ Saf. https://doi.org/10.1016/J.ECOENV.2020.111225
Killmer J, Widholm J, Slife F et al (1981) Reversal of glyphosate inhibition of carrot cell culture growth by glycolytic intermediates and organic and amino acids. Plant Physiol 68:1299–1302. https://doi.org/10.1104/PP.68.6.1299
Article CAS PubMed PubMed Central Google Scholar
Krüger L, Herzberg C, Rath H et al (2021) Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLOS Genet 17:e1009092. https://doi.org/10.1371/JOURNAL.PGEN.1009092
Article PubMed PubMed Central Google Scholar
Kuester A, Chang SM, Baucom RS (2015) The geographic mosaic of herbicide resistance evolution in the common morning glory, Ipomoea purpurea: evidence for resistance hotspots and low genetic differentiation across the landscape. Evol Appl 8:821. https://doi.org/10.1111/EVA.12290
Article CAS PubMed PubMed Central Google Scholar
Kuplińska A (2021) Rząd K (2021) Molecular targets for antifungals in amino acid and protein biosynthetic pathways. Amin Acids 537(53):961–991. https://doi.org/10.1007/S00726-021-03007-6
Comments (0)