Liu W, Xie L, He Y-H, Wu Z-Y, Liu L-X, Bai X-F et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun. 2021;12(1):1-18.
https://doi.org/10.1038/s41467-021-25202-5
PMid:34400640 PMCid:PMC8368010
Gronnier C, Collet D. New Trends in Esophageal Cancer Management. MDPI. 2021;13(12): 3030.
https://doi.org/10.3390/cancers13123030
PMid:34204314 PMCid:PMC8235022
Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040 new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163(3):649-58.
https://doi.org/10.1053/j.gastro.2022.05.054
PMid:35671803
Li N, Wu P, Shen Y, Yang C, Zhang L, Chen Y et al. Predictions of mortality related to four major cancers in China, 2020 to 2030. Cancer Commun. 2021;41(5):404-13.
https://doi.org/10.1002/cac2.12143
PMid:33660417 PMCid:PMC8118592
Abnet CC, Arnold M, Wei W-Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360-73.
https://doi.org/10.1053/j.gastro.2017.08.023
PMid:28823862 PMCid:PMC5836473
Ingelfinger JR, Rustgi A, El-Serag H. Esophageal carcinoma. N Engl J Med. 2014;371(26):2499-509.
https://doi.org/10.1056/NEJMra1314530
PMid:25539106
Salem ME, Puccini A, Xiu J, Raghavan D, Lenz HJ, Korn WM et al. Comparative molecular analyses of esophageal squamous cell carcinoma, esophageal adenocarcinoma, and gastric adenocarcinoma. The oncol. 2018;23(11):1319-27.
https://doi.org/10.1634/theoncologist.2018-0143
PMid:29866946 PMCid:PMC6291329
Tian B, Liu J, Zhang N, Song Y, Xu Y, Xie M et al. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1α. Oncogene. 2021;40(21):3734-47.
https://doi.org/10.1038/s41388-021-01809-2
PMid:33941854
Abbasi A, Movahedpour A, Amiri A, Najaf MS, Mostafavi-Pour Z. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr Mol Med. 2021;21(4):332-46.
https://doi.org/10.2174/18755666MTA5dNjU2w
https://doi.org/10.2174/1566524020666200903120344
PMid:32881669
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233.
https://doi.org/10.3390/ijms21093233
PMid:32370233 PMCid:PMC7247559
Shapiro J, Van Lanschot JJB, Hulshof MC, van Hagen P, van Berge Henegouwen MI, Wijnhoven BP et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090-8.
https://doi.org/10.1016/S1470-2045(15)00040-6
PMid:26254683
Wightman B, Ha I. Wightman, Ha, Ruvkun-1993-Cell-Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern. PDF Cell. 1993; 75:855-62.
https://doi.org/10.1016/0092-8674(93)90530-4
PMid:8252622
Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic regulation of microRNAs in cancer: shortening the distance from bench to bedside. Int J Mol Sci. 2021;22(14):7350.
https://doi.org/10.3390/ijms22147350
PMid:34298969 PMCid:PMC8306710
Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14(10):1326-34.
https://doi.org/10.1080/15476286.2015.1112487
PMid:26853707 PMCid:PMC5711461
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018; 9:402.
https://doi.org/10.3389/fendo.2018.00402
PMid:30123182 PMCid:PMC6085463
Rani V, Sengar RS. Biogenesis and mechanisms of microRNA‐mediated gene regulation. Biotechnol Bioeng. 2022;119(3):685-92.
https://doi.org/10.1002/bit.28029
PMid:34979040
Santovito D, Weber C. Non-canonical features of microRNAs: Paradigms emerging from cardiovascular disease. Nat Rev Cardiol. 2022:1-19.
https://doi.org/10.1038/s41569-022-00680-2
PMid:35304600
Mayya VK. Understanding molecular mechanisms of microRNA-mediated gene silencing. McGill University: Canada; 2021.
Pandita D. Role of miRNA technology and miRNAs in abiotic and biotic stress resilience. Plant Perspectives to Global Climate Changes. Elsevier; 2022:303-30.
https://doi.org/10.1016/B978-0-323-85665-2.00015-7
Huang V. Endogenous miRNAa: miRNA-mediated gene upregulation. RNA Activation. Springer; 2017: 65-79.
https://doi.org/10.1007/978-981-10-4310-9_5
PMid:28639192
Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta. 2021; 516:46-54.
https://doi.org/10.1016/j.cca.2021.01.008
PMid:33485903
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524-9.
https://doi.org/10.1073/pnas.242606799
PMid:12434020 PMCid:PMC137750
Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol. 2017; 7:65.
https://doi.org/10.3389/fonc.2017.00065
PMid:28459042 PMCid:PMC5394422
Kirkin V. History of the selective autophagy research: how did it begin and where does it stand today? J Mol Biol. 2020;432(1):3-27.
https://doi.org/10.1016/j.jmb.2019.05.010
PMid:31082435 PMCid:PMC6971693
Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19(9):579-93.
https://doi.org/10.1038/s41580-018-0033-y
https://doi.org/10.1038/s41580-018-0048-4
PMCid:PMC6424591
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603-14.
https://doi.org/10.1083/jcb.200507002
PMid:16286508 PMCid:PMC2171557
Zhou J, Li X-Y, Liu Y-J, Feng J, Wu Y, Shen H-M et al. Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy. 2021:1-16.
https://doi.org/10.1080/15548627.2021.1984656
PMid:34662529 PMCid:PMC9225210
Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: A comprehensive review. Biomed Pharmacother. 2018; 104:485-95.
https://doi.org/10.1016/j.biopha.2018.05.007
PMid:29800913
Ashrafizadeh M, Zarrabi A, Orouei S, Hushmandi K, Hakimi A, Zabolian A et al. MicroRNA-mediated autophagy regulation in cancer therapy: the role in chemoresistance/chemosensitivity. Eur J Pharmacol. 2021; 892:173660.
https://doi.org/10.1016/j.ejphar.2020.173660
PMid:33310181
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016;30(17):1913-30.
https://doi.org/10.1101/gad.287524.116
PMid:27664235 PMCid:PMC5066235
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672-6.
https://doi.org/10.1038/45257
PMid:10604474
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100(25):15077-82.
https://doi.org/10.1073/pnas.2436255100
PMid:14657337 PMCid:PMC299911
Huo Y, Cai H, Teplova I, Bowman-Colin C, Chen G, Price S et al. Autophagy Opposes p53-Mediated Tumor Barrier to Facilitate Tumorigenesis in a Model of PALB2-Associated Hereditary Breast CancerAutophagy Promotes Breast Cancer Development. Cancer Discov. 2013;3(8):894-907.
https://doi.org/10.1158/2159-8290.CD-13-0011
PMid:23650262 PMCid:PMC3740014
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25(8):795-800.
https://doi.org/10.1101/gad.2016211
PMid:21498569 PMCid:PMC3078705
White E. The role for autophagy in cancer. J Clin Investig. 2015;125(1):42-6.
https://doi.org/10.1172/JCI73941
PMid:25654549 PMCid:PMC4382247
Lock R, Kenific CM, Leidal AM, Salas E, Debnath J. Autophagy-Dependent Production of Secreted Factors Facilitates Oncogenic RAS-Driven InvasionAutophagy-Dependent Secretion and Invasion. Cancer Discov. 2014;4(4):466-79.
https://doi.org/10.1158/2159-8290.CD-13-0841
PMid:24513958 PMCid:PMC3980002
Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155(6):1216-9.
https://doi.org/10.1016/j.cell.2013.11.019
PMid:24315093 PMCid:PMC3987898
Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528-42.
https://doi.org/10.1038/nrc.2017.53
PMid:28751651 PMCid:PMC5975367
Lin Z, Chen Y, Lin Y, Lin H, Li H, Su X et al. Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Sci Rep. 2020;10(1):1-11.
https://doi.org/10.1038/s41598-020-77119-6
PMid:33208781 PMCid:PMC7676265
Zhao Y, Xu L, Wang X, Niu S, Chen H, Li C. A novel prognostic mRNA/miRNA signature for esophageal cancer and its immune landscape in cancer progression. Mol Oncol. 2021;15(4):1088-109.
https://doi.org/10.1002/1878-0261.12902
PMid:33463006 PMCid:PMC8024720
Shi Z-Z, Wang W-J, Chen Y-X, Fan Z-W, Xie X-F, Yang L-Y et al. The miR-1224-5p/TNS4/EGFR axis inhibits tumour progression in oesophageal squamous cell carcinoma. Cell Death Dis. 2020;11(7):1-13.
https://doi.org/10.1038/s41419-020-02801-6
PMid:32732965 PMCid:PMC7393493
Zhang Q, Gan H, Song W, Chai D, Wu S. MicroRNA-145 promotes esophageal cancer cells proliferation and metastasis by targeting SMAD5. Scand J Gastroenterol. 2018;53(7):769-76.
https://doi.org/10.1080/00365521.2018.1476913
PMid:29852786
Hall TM, Tétreault M-P, Hamilton KE, Whelan KA. Autophagy as a cytoprotective mechanism in esophageal squamous cell carcinoma. Curr Opin Pharmacol. 2018; 41:12-9.
https://doi.org/10.1016/j.coph.2018.04.003
PMid:29677645 PMCid:PMC6108938
Adam J. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169-75.
https://doi.org/10.1038/nature20805
PMid:28052061 PMCid:PMC5651175
Du H, Che J, Shi M, Zhu L, Hang JB, Chen Z et al. Beclin 1 expression is associated with the occurrence and development of esophageal squamous cell carcinoma. Oncol Lett. 2017;14(6):6823-8.
https://doi.org/10.3892/ol.2017.7015
PMid:29163702 PMCid:PMC5686516
Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC, García-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med. 2013; 65:750-64.
https://doi.org/10.1016/j.freeradbiomed.2013.06.041
PMid:23820265
Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1alpha expression. Pathol Oncol Res. 2009;15(3):487-93.
https://doi.org/10.1007/s12253-008-9143-8
PMid:19130303 PMCid:PMC2791489
Bai H, Inoue J, Kawano T, Inazawa J. A transcriptional variant of the LC3A gene is involved in autophagy and frequently inactivated in human cancers. Oncogene. 2012;31(40):4397-408.
https://doi.org/10.1038/onc.2011.613
PMid:22249245
Yamashita K, Miyata H, Makino T, Masuike Y, Furukawa H, Tanaka K et al. High expression of the mitophagy-related protein Pink1 is associated with a poor response to chemotherapy and a poor prognosis for patients treated with neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Ann Surg Oncol. 2017;24(13):4025-32.
https://doi.org/10.1245/s10434-017-6096-8
PMid:29022200
Yoshioka A, Miyata H, Doki Y, Yamasaki M, Sohma I, Gotoh K et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol. 2008;33(3):461-8.
Yang P-W, Hsieh M-S, Chang Y-H, Huang P-M, Lee J-M. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget. 2017;8(53):91494.
https://doi.org/10.18632/oncotarget.20793
PMid:29207660 PMCid:PMC5710940
Chen C, Chen S, Cao H, Wang J, Wen T, Hu X et al. Prognostic significance of autophagy-related genes within esophageal carcinoma. BMC Cancer. 2020;20(1):1-11.
https://doi.org/10.1186/s12885-020-07303-4
https://doi.org/10.1186/s12885-021-09033-7
PMid:34979993 PMCid:PMC8722274
Wu B-L, Wang D, Bai W-J, Zhang F, Zhao X, Yi Y et al. An integrative framework to identify cell death-related microRNAs in esophageal squamous cell carcinoma. Oncotarget. 2016;7(35):56758.
https://doi.org/10.18632/oncotarget.10779
PMid:27462775 PMCid:PMC5302951
Chen F, Chu L, Li J, Shi Y, Xu B, Gu J et al. Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells. Thoracic cancer. 2020;11(3):570-80.
https://doi.org/10.1111/1759-7714.13295
PMid:31922357 PMCid:PMC7049507
Meng L, Liu S, Ding P, Chang S, Sang M. Circular RNA ciRS‐7 inhibits autophagy of ESCC cells by functioning as miR‐1299 sponge to target EGFR signaling. J Cell Biochem. 2020;121(2):1039-49.
https://doi.org/10.1002/jcb.29339
PMid:31490018
Mu Y, Wang Q, Tan L, Lin L, Zhang B. microRNA‑144 inhibits cell proliferation and invasion by directly targeting TIGAR in esophageal carcinoma. Oncol Lett. 2020;19(4):3079-88.
https://doi.org/10.3892/ol.2020.11420
PMid:32256808 PMCid:PMC7074326
Feng J, Qi B, Guo L, Chen L-Y, Wei X-F, Liu Y-Z et al. miR-382 functions as a tumor suppressor against esophageal squamous cell carcinoma. World J Gastroenterol. 2017;23(23):4243.
https://doi.org/10.3748/wjg.v23.i23.4243
PMid:28694664 PMCid:PMC5483498
Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 2018; 117:993-1001.
https://doi.org/10.1016/j.ijbiomac.2018.05.121
PMid:29782972
You L, Wang Z, Li H, Shou J, Jing Z, Xie J et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729-39.
https://doi.org/10.1080/15548627.2015.1017192
PMid:25951043 PMCid:PMC4509450
Li M, Meng X, Li M. MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging (Albany N Y). 2020;12(12):12107.
https://doi.org/10.18632/aging.103379
PMid:32554852 PMCid:PMC7343473
Fujiwara N, Inoue J, Kawano T, Tanimoto K, Kozaki K-i, Inazawa J. miR-634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 2015;75(18):3890-901.
https://doi.org/10.1158/0008-5472.CAN-15-0257
PMid:26216549
Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M. MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett. 2017; 390:126-36.
https://doi.org/10.1016/j.canlet.2017.01.009
PMid:28108314
Chen Y, Lu Y, Ren Y, Yuan J, Zhang N, Kimball H et al. Starvation-induced suppression of DAZAP1 by miR-10b integrates splicing control into TSC2-regulated oncogenic autophagy in esophageal squamous cell carcinoma. Theranostics. 2020;10(11):4983.
https://doi.org/10.7150/thno.43046
PMid:32308763 PMCid:PMC7163442
Chen H, Yao X, Di X, Zhang Y, Zhu H, Liu S et al. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma. Cancer Lett. 2020; 483:114-26.
https://doi.org/10.1016/j.canlet.2020.01.037
PMid:32014456
Akashi E, Fujihara S, Morishita A, Tadokoro T, Chiyo T, Fujikawa K et al. Effects of galectin-9 on apoptosis, cell cycle and autophagy in human esophageal adenocarcinoma cells. Oncol Rep. 2017;38(1):506-14.
https://doi.org/10.3892/or.2017.5689
PMid:28586026
Xiao S, Liu N, Yang X, Ji G, Li M. Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med. 2021; 164:58-75.
https://doi.org/10.1016/j.freeradbiomed.2020.11.029
PMid:33307164
Comments (0)