Argüelles JC (2017) Trehalose as antifungal target: the picture is still incomplete. Virulence 8:237–238
Belenky P, Camacho D, Collins JJ (2013) Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep 3:350–358
Article CAS PubMed PubMed Central Google Scholar
Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188
Article CAS PubMed PubMed Central Google Scholar
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med. 4:165rv13
Campoy S, Adrio JL (2017) Antifungals. Biochem Pharmacol 133:86–96
Article CAS PubMed Google Scholar
Cantón E, Pemán J, Quindós G, Eraso E, Miranda-Zapico I, Álvarez M, Merino P et al (2011) Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother 55:5590–5596
Article PubMed PubMed Central Google Scholar
Correia I, Prieto D, Román E, Wilson D, Hube B, Alonso-Monge R, Pla J (2019) Cooperative role of MAPK pathways in the interaction of Candida albicans with the host epithelium. Microorganisms 8:48
Article PubMed PubMed Central Google Scholar
Denning DW, Bromeley MJ (2015) Infectious disease: how to bolster the antifungal pipeline. Science 347:1414–1416
Article CAS PubMed Google Scholar
Van Dijck P, De Rop L, Szlufcik K, Van Ael E, Thevelein JM (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 70:1772–1782
Article PubMed PubMed Central Google Scholar
Garre E, Matallana E (2009) The three trehalases Nth1p, Nth2p and Ath1p participate in the mobilization of intracellular trehalose required for recovery from saline stress in Saccharomyces cerevisiae. Microbiology 155:3092–3099
Article CAS PubMed Google Scholar
González-Párraga P, Sánchez-Fresneda R, Zaragoza O, Argüelles JC (2011) Amphotericin B induces trehalose synthesis and simultaneously activates an antioxidant enzymatic response in Candida albicans. Biochim Biophys Acta 1810:777–783
Guirao-Abad JP, Sánchez-Fresneda R, Machado F, Argüelles JC, Martínez-Esparza M (2018) Micafungin enhances the human macrophage response to Candida albicans through β-Glucan exposure. Antimicrob Agents Chemother 62:e02161-e2217
Article CAS PubMed PubMed Central Google Scholar
Guirao-Abad JP, Sánchez-Fresneda R, Román E, Plá J, Argüelles JC, Alonso-Monge R (2020) The MAPK Hog1 mediates the response to amphotericin B in Candida albicans. Fungal Genet Biol 136:103302
Article CAS PubMed Google Scholar
Holland LM, Schroder MS, Turner SA, Taff H, Andes D, Grozer Z, Gacser A et al (2014) Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog 10:e1004365
Article PubMed PubMed Central Google Scholar
Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D (2020) Fungal infections in humans: the silent crisis. Microbial Cell 7:143–145
Article PubMed PubMed Central Google Scholar
Kontoyiannis DP (2000) Modulation of Fluconazole sensitivity by the interaction of mitochondria and Erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother 46:191–197
Article CAS PubMed Google Scholar
Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144
Article CAS PubMed Google Scholar
Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous Candida albicans mutants are avirulent. Cell 90:939–949
Article CAS PubMed Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
Article CAS PubMed Google Scholar
Mesa-Arango AC, Trevijano-Contador N, Román E, Sánchez-Fresneda R, Casas C et al (2014) The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother 58:6627–6638
Article PubMed PubMed Central Google Scholar
Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44
Article PubMed PubMed Central Google Scholar
Pál S, Toth R, Nosanchuk J, Cacsaba A, Vagvölgyi C, Nemeth T, Gácser A (2021) A Candida parapsilosis overexpression collection reveals genes required for pathogenesis. J Fungi 7:97
Pedreño Y, Gimeno-Alcañiz JV, Matallana E, Argüelles JC (2002) Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol 177:494–499
Perfect JR, Tenor JL, Miao Y, Brennan RG (2017) Trehalose pathway as an antifungal target. Virulence 8:143–149
Article CAS PubMed Google Scholar
Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53
Pfaller MA, Andes DR, Diekema DJ (2014) Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the prospective antifungal therapy (PATH) registry 2004–2008. PLoS ONE 97:e101510
Prieto D, Román E, Correia I, Pla J (2014) The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans. PLoS ONE 9:e87128
Article PubMed PubMed Central Google Scholar
Rodaki A, Young T, Brown AJP (2006) Effects of depleting the essential central metabolic enzyme fructose-1,6-bisphosphate aldolase on the growth and viability of Candida albicans: Implications for antifungal drug target discovery. Eukaryot Cell 5:1371–1377
Article CAS PubMed PubMed Central Google Scholar
Saliba F, Dupont B (2008) Renal impairment and amphotericin B formulations in patients with invasive fungal infections. Med Mycol 46:97–112
Article CAS PubMed Google Scholar
Sánchez-Fresneda R, Guirao-Abad JP, Martinez-Esparza M, Maicas S, Valentín E et al (2015) Homozygous deletion of ATC1 and NTC1 genes in Candida parapsilosis abolishes trehalase activity and affects cell growth, sugar metabolism, stress resistance, infectivity and biofilm formation. Fungal Genet Biol 85:45–57
Sánchez-Fresneda R, Muñoz-Megías ML, Yagüe G, Solano F, Maicas S, Argüelles JC (2022) Lack of functional trehalase activity in Candida parapsilosis increases susceptibility to itraconazoles. J Fungi 8:371
Sangalli-Leite F, Scorzoni L, Mesa-Arango AC, Casas C, Herrero E et al (2011) Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes Infect 13:457–467
Article CAS PubMed Google Scholar
Shekhova E, Kniemeyer O, Brakhage AA (2017) Induction of mitochondrial reactive oxygen species production by itraconazole, terbinafine and amphotericin B as a mode of action against Aspergillus fumigatus. Antimicrob Agents Chemother 61:e00978-e1017
Article CAS PubMed PubMed Central Google Scholar
Thammahong A, Puttikamonkul S, Perfect JR et al (2017) Central role of the trehalose biosynthesis pathway in the pathogenesis of human fungal infections: opportunities and challenges for therapeutic development. Microbiol Mol Biol Rev 81:e00053-e116
Article PubMed PubMed Central Google Scholar
Toth R, Nosek J, Mora-Montes H, Gabaldón T, Bliss J, Nosanchuck J, Turner SB, Butler G et al (2019) Candida parapsilosis: from genes to bedside. Clin Microbiol Rev 32:e00111-e118
Article CAS PubMed PubMed Central Google Scholar
Tournu H, Fiori P, Van Dijck P (2013) Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog 9:e1003447
Article CAS PubMed PubMed Central Google Scholar
Trofa D, Gacser A, Noshanchuk J (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625
Comments (0)