Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. https://doi.org/10.1038/nature12060.
Article CAS PubMed PubMed Central Google Scholar
Lindenbach B, Rice C. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields’ Virology. 4th ed. Lippincott Williams & Wilkins; 2001. p. 991–1041.
Vasilakis N, Cardosa J, Diallo M, et al. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J Virol. 2010;84(7):3726–8. https://doi.org/10.1128/JVI.02640-09.
Article PubMed PubMed Central Google Scholar
Fagbami AH, Monath TP, Fabiyi A. Dengue virus infections in Nigeria: a survey for antibodies in monkeys and humans. Trans R Soc Trop Med Hyg. 1977;71(1):60–5. https://doi.org/10.1016/0035-9203(77)90210-3.
Article CAS PubMed Google Scholar
Wang E, Ni H, Xu R, et al. Evolutionary Relationships of endemic/epidemic and sylvatic dengue viruses. J Virol. 2000;74(7):3227–34. https://doi.org/10.1128/JVI.74.7.3227-3234.2000.
Article CAS PubMed PubMed Central Google Scholar
Gubler DJ. Dengue, Urbanization and Globalization: the unholy trinity of the 21st century. Trop Med Health. 2011;39(4 Suppl):3–11. https://doi.org/10.2149/tmh.2011-S05.
Article PubMed PubMed Central Google Scholar
Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 2020;11:2130. https://doi.org/10.1038/s41467-020-16010-4.
Article CAS PubMed PubMed Central Google Scholar
St. John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol. 2019;19(4):218–30. https://doi.org/10.1038/s41577-019-0123-x.
Article CAS PubMed Google Scholar
Cattarino L, Rodriguez-Barraquer I, Imai N, Cummings DAT, Ferguson NM. Mapping global variation in dengue transmission intensity. Sci Transl Med. 2020;12(528):eaax4144. https://doi.org/10.1126/scitranslmed.aax4144.
Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis. 2016;16(8):935–41. https://doi.org/10.1016/S1473-3099(16)00146-8.
Messina JP, Brady OJ, Golding N, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508–15. https://doi.org/10.1038/s41564-019-0476-8.
Article CAS PubMed PubMed Central Google Scholar
Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. The Lancet. 2019;393(10169):350–63. https://doi.org/10.1016/S0140-6736(18)32560-1.
World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control : new edition. World Health Organization; 2009. https://apps.who.int/iris/handle/10665/44188. Accessed 19 July 2022.
Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002;10(2):100–3. https://doi.org/10.1016/S0966-842X(01)02288-0.
Article CAS PubMed Google Scholar
Beatty ME, Stone A, Fitzsimons DW, et al. Best practices in dengue surveillance: a report from the Asia-Pacific and Americas dengue prevention boards. Plos Negl Trop Dis. 2010;4(11):e890. https://doi.org/10.1371/journal.pntd.0000890.
Article PubMed PubMed Central Google Scholar
Syenina A, Jagaraj CJ, Aman SA, Sridharan A, St John AL. St John AL Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcγ receptors Medzhitov R, ed. eLife. 2015;4:e05291. https://doi.org/10.7554/eLife.05291.
Article PubMed PubMed Central Google Scholar
• Rathore APS, Mantri CK, Aman SAB, et al. Dengue virus–elicited tryptase induces endothelial permeability and shock. J Clin Invest. 2019;129(10):4180–93. https://doi.org/10.1172/JCI128426. This study showed that elevated tryptase levels in dengue patients correlated with increased severity of DHF and DSS; and tryptase inhibiting drugs may be useful for the treatment of dengue virus induced vascular leakage and shock.
Article PubMed PubMed Central Google Scholar
St John AL, Rathore AP, Raghavan B, Ng ML, Abraham SN. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage Medzhitov R, ed. eLife. 2013;2:e00481. https://doi.org/10.7554/eLife.00481.
Article PubMed PubMed Central Google Scholar
Rathore AP, Farouk FS, St. John AL. Risk factors and biomarkers of severe dengue. Curr Opin Virol. 2020;43:1–8. https://doi.org/10.1016/j.coviro.2020.06.008.
Article CAS PubMed Google Scholar
• Vasikasin V, Rojdumrongrattana T, Chuerboonchai W, et al. Effect of standard dose paracetamol versus placebo as antipyretic therapy on liver injury in adult dengue infection: a multicentre randomised controlled trial. Lancet Glob Health. 2019;7(5):e664–70. https://doi.org/10.1016/S2214-109X(19)30032-4. This clinical trial raises concerns regarding hepatotoxicity and lack of utility of paracetamol as antipyretic in dengue management.
Senaratne T, Carr J, Noordeen F. Elevation in liver enzymes is associated with increased IL-2 and predicts severe outcomes in clinically apparent dengue virus infection. Cytokine. 2016;83:182–8. https://doi.org/10.1016/j.cyto.2016.04.010.
Article CAS PubMed Google Scholar
Kittitrakul C, Silachamroon U, Phumratanaprapin W, Krudsood S, Wilairatana P, Treeprasertsuk S. Liver function tests abnormality and clinical severity of dengue infection in adult patients. J Med Assoc Thail Chotmaihet Thangphaet. 2015;98(Suppl 1):S1-8.
Trung DT, Thao LTT, Hien TT, et al. Liver involvement associated with dengue infection in adults in Vietnam. Am J Trop Med Hyg. 2010;83(4):774–80. https://doi.org/10.4269/ajtmh.2010.10-0090.
Article PubMed PubMed Central Google Scholar
de Souza LJ, Nogueira RMR, Soares LC, et al. The impact of dengue on liver function as evaluated by aminotransferase levels. Braz J Infect Dis. 2007;11:407–10. https://doi.org/10.1590/S1413-86702007000400007.
Deen J, von Seidlein L. Paracetamol for dengue fever: no benefit and potential harm? Lancet Glob Health. 2019;7(5):e552–3. https://doi.org/10.1016/S2214-109X(19)30157-3.
World Health Organization. Regional Office for South-East Asia. Comprehensive Guideline for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Revised and Expanded Edition. WHO Regional Office for South-East Asia; 2011. Accessed July 19, 2022. http://apps.who.int/iris/handle/10665/204894
Stephen J Thomas, MD, Alan L Rothman, MD, Anon Srikiatkhachorn, MD, Siripen Kalayanarooj, MD. Dengue virus infection: prevention and treatment - UpToDate. UpToDate. Published February 24, 2022. Accessed June 22, 2022. https://www.uptodate.com/contents/dengue-virus-infection-prevention-and-treatment?search=dengue&source=search_result&selectedTitle=3~103&usage_type=default&display_rank=3#H13085392
Wills BA, Dung NM, Loan HT, et al. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med. 2005;353(9):877–89. https://doi.org/10.1056/NEJMoa044057.
Dung NM, Day NPJ, Tam DTH, et al. Fluid replacement in dengue shock syndrome: a randomized, double-blind comparison of four intravenous-fluid regimens. Clin Infect Dis. 1999;29(4):787–94. https://doi.org/10.1086/520435.
Article CAS PubMed Google Scholar
Nhan NT, Phuong CXT, Kneen R, et al. Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis. 2001;32(2):204–13. https://doi.org/10.1086/318479.
Rosenberger KD, Lum L, Alexander N, et al. Vascular leakage in dengue – clinical spectrum and influence of parenteral fluid therapy. Trop Med Int Health. 2016;21(3):445–53. https://doi.org/10.1111/tmi.12666.
Ranjit S, Ramanathan G, Ramakrishnan B, Kissoon N. Targeted interventions in critically ill children with severe dengue. Indian J Crit Care Med Peer-Rev Off Publ Indian Soc Crit Care Med. 2018;22(3):154–61. https://doi.org/10.4103/ijccm.IJCCM_413_17.
Trung DT, Trieu HT, Wills BA. Microvascular fluid exchange: implications of the revised starling model for resuscitation of dengue shock syndrome. Front Med. 2020;7:601520. https://doi.org/10.3389/fmed.2020.601520
• Masri MFB, Mantri CK, Rathore APS, St John AL. Peripheral serotonin causes dengue virus–induced thrombocytopenia through 5HT2 receptors. Blood. 2019;133(21):2325–37. https://doi.org/10.1182/blood-2018-08-869156. This preclinical study shows that drugs targeting serotonin receptor 5HT2 may be useful for the treatment of dengue induced thrombocytopenia.
Article CAS PubMed Google Scholar
Sun DS, King CC, Huang HS, et al. Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost. 2007;5(11):2291–9. https://doi.org/10.1111/j.1538-7836.2007.02754.x.
Article CAS PubMed Google Scholar
Ralapanawa U, Alawattegama ATM, Gunrathne M, Tennakoon S, Kularatne SAM, Jayalath T. Value of peripheral blood count for dengue severity prediction. BMC Res Notes. 2018;11:400. https://doi.org/10.1186/s13104-018-3505-4.
Article CAS PubMed PubMed Central Google Scholar
Lam PK, Ngoc TV, Thu Thuy TT, et al. The value of daily platelet counts for predicting dengue shock syndrome: results from a prospective observational study of 2301 Vietnamese children with dengue. Plos Negl Trop Dis. 2017;11(4):e0005498. https://doi.org/10.1371/journal.pntd.0005498.
Article PubMed PubMed Central Google Scholar
Lye DC, Archuleta S, Syed-Omar SF, et al. Prophylactic platelet transfusion plus supportive care versus supportive care alone in adults with dengue and thrombocytopenia: a multicentre, open-label, randomised, superiority trial. The Lancet. 2017;389(10079):1611–8. https://doi.org/10.1016/S0140-6736(17)30269-6.
• Chakraborty S, Alam S, Sayem M, et al. Investigation of the efficacy and safety of eltrombopag to correct thrombocytopenia in moderate to severe dengue patients - a phase II randomized controlled clinical trial. E Clinical Medicine. 2020;29:100624. https://doi.org/10.1016/j.eclinm.2020.100624. This clinical trial suggests eltrombopag as potential therapeutic to augment platelet recovery and reduce bleeding manifestations in DHF patients.
Jenkins JM, Williams D, Deng Y, et al. Phase 1 clinical study of eltrombopag, an oral, nonpeptide thrombopoietin receptor agonist. Blood. 2007;109(11):4739–41. https://doi.org/10.1182/blood-2006-11-057968.
Comments (0)