Effectiveness of coronavirus disease-19 vaccination on disease transmission, hospitalization, and clinical outcomes in adults in North India
Ruchi Agrawal1, Yogesh Agrawal2, Manu Saini1, Yogesh Singh3, Shikha Mathur1, Amit Tak4
1 Department of Physiology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
2 Department of Neurosurgery, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
3 Department of Physiology, Zoram Medical College, Falkawn, Mizoram, India
4 Department of Physiology, RVRS Medical College, Bhilwara, Rajasthan, India
Correspondence Address:
Dr. Yogesh Singh
Department of Physiology, Zoram Medical College, Falkawn, Mizoram
India
Source of Support: None, Conflict of Interest: None
DOI: 10.4103/ijam.ijam_68_22
Introduction: Covaxin and Covishield vaccines have been rapidly rolled out in India to curb the Coronavirus disease-19 (COVID-19) pandemic. The present study tested the effectiveness of COVID-19 vaccination in adults in North India. Effectiveness was tested by considering disease transmission and post-COVID outcomes in infected individuals.
Materials and Methods: This study was conducted in the Department of Physiology at MGM College, Jaipur (Rajasthan, India), after approval from the Ethics Committee. Vaccinated and nonvaccinated groups were compared for disease transmission, hospitalization, and clinical outcomes. Researchers collected data using questionnaires circulated through Google forms. The association between attributes was tested using the Chi-squared test. The significance level was considered at 5%.
Results: Vaccination significantly reduced disease transmission of COVID-19 (χ2 = 4.51; P = 0.034). However, no significant differences were seen in the Reverse transcription polymerase chain reaction positivity, chest computed tomography findings, and hospitalization. Similarly, COVID-related symptoms and their severity did not differ significantly between the two groups. The proportion of vaccinated individuals increases with age (χ2 = 41.68; P < 0.001). Youths and older adults were vaccinated once and twice, respectively (χ2 = 41.77; P < 0.001). The severity of adverse effects postimmunization (AEFI) was similar in all age groups (χ2 = 13.22; P < 0.21). Males and females were equally vaccinated (χ2 = 1.13; P < 0.288). However, males took two doses compared to females (χ2 = 6,57; P < 0.01). Adverse effects postimmunization were more severe in females than males (χ2 = 13.10; P < 0.001). Researchers found no association between the number of vaccine doses and the severity of AEFIs (χ2 = 16.42; P = 0.06).
Conclusion: The present study concludes the beneficial effect of vaccination in reducing disease transmission. However, vaccination showed no effectiveness in mitigating other COVID-related outcomes.
The following core competencies are addressed in this article: Medical knowledge, systems-based practice, practice-based learning, and improvement.
Keywords: Adverse effects postimmunizations, coronavirus disease-19, covaxin, covishield, immunization, vaccination
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an epidemic in Wuhan (Hubei province, China) on December 12, 2019.[1],[2] Since then, the virus has spread globally and caused thousands of deaths. Finally, the World Health Organization (WHO) declared a pandemic on March 12, 2020.[3] As of July 14, 2022, the WHO reported over 556 million cases and over 6 million deaths globally.[4] The first case of coronavirus disease-19 (COVID-19) in India was diagnosed on January 30, 2020.[5] Many disease transmission patterns were seen due to the country's climatic and cultural diversity.[6] SARS-CoV-2, a highly contagious virus, spreads by inhaling respiratory aerosols, direct human contact, and fomites.[7] Social distancing and personal hygiene measures, including frequent hand washing, masks, and alcohol-based hand sanitizers, protect individuals from viral infection.[8] However, immunotherapy effectively prevents infectious diseases and cancers, which involves the artificial triggering of the immune system to elicit an immune response.[9]
Vaccine against SARS-CoV-2 plays a crucial role in public health interventions, reducing hospital patient load, and is a prime focus of policy-making.[10],[11],[12] Many studies have shown a reduction in disease transmission following vaccination.[13] The COVID-19 vaccination program was introduced in India on January 16, 2021.[14] The Central Drugs Standard Control Organization in India granted permission to use two vaccines for emergency use that is, Covishield® (AstraZeneca's vaccine manufactured by Serum Institute of India) and Covaxin® (manufactured by Bharat Biotech Limited).[15] Many studies compared the immunogenic and reactogenic efficacy of vaccines.[16] The present study evaluated the effectiveness of the vaccines on COVID-19-related outcomes, including disease transmission, symptoms, severity, hospitalization, and chest computed tomography (CT) findings.
Materials and MethodsThis cross-sectional study was conducted in the Department of Physiology at Mahatma Gandhi Medical College, Jaipur (Rajasthan, India), after approval from the Institutional Ethics Committee. The study tested the effectiveness of COVID-19 vaccination by comparing COVID-19-related outcomes in vaccinated and nonvaccinated individuals over 18 years.[17] The relationship between vaccination-related events with age and gender was also evaluated. The COVID-19-related effects include disease transmission rate, hospitalization requirement, presence of symptoms, severity of symptoms, COVID-19 findings in chest CT, and chest CT score. The disease transmission rate was calculated as a percentage of COVID-19-positive cases after 14 days of taking at least a single dose of vaccine. The Ministry of Health and Family Welfare of the Government of India recommended two doses of the COVID-19 vaccine. The second dose of Covaxin can be taken 4–6 weeks after the first dose.[18] The vaccine-related events include the number of vaccine doses taken, adverse effects following immunization, and severity of AEFIs. According to revised AEFI guidelines, AEFIs were divided into common minor, severe, and serious AEFIs. The common minor AEFIs include local reaction, fever, and systemic symptoms that can result as a part of the immune response or due to the vaccine's components. The serious AEFIs include conditions that require hospitalization, disability, and death. AEFIs neither common minor nor serious were included in severe AEFIs.[19] Participants inoculated with either Covaxin or Covishield were included in the study. Researchers collected demographic and clinical data using questionnaires circulated using Google Forms (Google, Mountain View, CA, USA) from April 29, 2021, to June 23, 2021. The Google Form link was distributed using WhatsApp Messenger groups involving unknown members.[20] Further, sharing the Google Form link with other WhatsApp Messenger groups was requested. Among the responses, only responses from major states of Northern India, including Rajasthan, Madhya Pradesh, Gujarat, and Uttar Pradesh, were selected for the study.
The quantitative data were expressed as the median and interquartile range, and qualitative data were expressed as percentages. Authors discretized age to find relationships with vaccination-related events. The association between attributes was tested using the Chi-squared test. The significance level was considered at 5% (α = 0.05). Researchers used Google Sheets for data collection. R 4.1.2 and MATLAB 2019a for statistical analysis and graphics.[21]
ResultsA total of 453 responses were obtained from Google Forms. The median age of participants was 26 years (minimum = 18 and maximum = 72), with a male preponderance (58.5%) [Figure 1] and [Figure 2]. Only the samples from Northern India were selected among the Google Form responses received. Most of the responses were from Rajasthan (70.2%), followed by Madhya Pradesh (11.5%). The percentage of vaccinated individuals was 57.8% [Figure 3].
Vaccination showed a significant effect on the reduction of transmission of COVID-19 (χ2 = 4.51; P = 0.034). However, no significant differences were seen in the reverse transcription polymerase chain reaction positivity, chest CT findings, chest CT score, and hospitalization [Table 1]. Similarly, the presence of symptoms, fever, cough, loss of taste, and severity of symptoms was not substantially different in vaccinated and unvaccinated individuals [Table 2]. The proportion of vaccinated individuals increased with age (χ2 = 41.68; P < 0.001). Most individuals <20 years had taken one dose of the vaccine, while higher age groups took two doses of the vaccine (χ2 = 41.77; P < 0.001). No significant differences were found between age groups and severity of AEFIs (χ2 = 13.22; P < 0.21) [Table 3]. The vaccination status across gender did not differ significantly. (χ2 = 1.13; P < 0.288). Most of the males had taken two doses as compared to females (χ2 = 6,57; P < 0.01). Adverse effects postimmunization were more severe in females than males (χ2 = 13.10; P < 0.001) [Table 4]. There was no association between the number of vaccine doses and the severity of AEFIs (χ2 = 16.42; P = 0.06).
The primary role of vaccination is disease prevention and reduction in transmission of infection, hospitalization events, and mortality.[12],[22] Vaccine's effectiveness can be measured either from antibody titer or clinically. The vaccine's effectiveness depends on age, gender, ethnic inequality, diabetes, and blood groups.[23],[24],[25],[26] Covishield and Covaxin were rolled out to curb the ongoing pandemic in India. Covishield (ChAdOx1-S) used the viral vector platform.[27] However, Covaxin is a whole virion-inactivated SARS-CoV-2 vaccine (BBV152).[28] Ella et al. conducted clinical trials and found that BBV152 was highly efficacious against laboratory-confirmed symptomatic COVID-19 disease in adults.[29],[30],[31] Many researchers proved the immunogenicity and protective efficacy of an inactivated SARS-CoV-2 vaccine.[32],[33],[34] Yadav discussed challenges and tools to test the effectiveness of vaccines. Multiple testing methodologies lead to nonstandardization in quantifying the protective immune response.[35] Alternatively, vaccine effectiveness can be determined using clinical outcomes, such as rate of transmission, presence, and severity of symptoms, hospital admissions, and mortality.
The present study tested vaccine effectiveness clinically and showed that the vaccines (BBV152 and ChAdOx1) caused a significant reduction in disease transmission. However, there was no significant decrease in hospital admissions, presence and severity of symptoms, and chest CT score. The present study considered CT score as an outcome as it has an independent role in diagnosing COVID-19.[36] Bhattacharya et al. evaluated the association between disease severity based on intensive care unit (ICU) admission and vaccination status. The odds of hospitalization were 0.12 (95% confidence interval [CI]: 0.03–0.45), and ICU admission/death was 0.07 (95% CI: 0.01–0.36) among fully vaccinated individuals. On the contrary, the present study showed no significant association between vaccination status and disease severity.[37] Kamal et al. studied AEFIs in health-care workers with two doses of the Covishield vaccine. Active and passive surveillance was conducted after 48 h and on days 8, 15, 22, and 28 for both doses. The researchers found 1020 nonserious and two serious AEFI (altered sensorium) within 48 h of the first dose, while 220 nonserious AEFI were reported within 48 h of the second dose. No AEFIs were reported after 15 days for both doses.[38] In a similar study on 1145 individuals, Sachdeva et al. showed that the adverse effects of vaccination were higher in females and the 18–27 (73%) age group. The most typical symptom was pain at the injection site (85.2%), followed by fever (62.6%).[39] The present study found no association between AEFIs and age, but the severity of AEFIs was higher in females. Arora et al. encountered more adverse effects and breakthrough infections in vaccinated females.[40] Selvaraj et al. designed a study using Google Forms to determine vaccine effectiveness. Researchers found COVID infection in vaccinated and nonvaccinated individuals to be 26% and 44.5%, respectively (odds ratio = 2.27).[41] Basavaraja et al. evaluated adverse events following COVID-19 vaccination from a tertiary care hospital in South India within the first 90 days of vaccination. Among 11,656 vaccine doses, 445 AEFIs were reported from 269 subjects (incidence rate = 3.48%) mostly in the age group of 18–65 years.[14] Abhilash et al. assessed vaccination effects among symptomatic patients of COVID-19 during the second wave of the pandemic in India. Contrary to the present study, at least one dose of vaccine reduced the need for hospitalization (relative risk: 0.40; 95% CI: 0.35–0.47), oxygenation (0.33; 0.27–0.40), noninvasive ventilation (0.23; 0.17–0.32), ICU admission (0.18; 0.12–0.27), and mortality (0.18; 0.11–0.29).[42] Verma et al. described the prominent role of diabetes and hypertension in the causation of mortality of vaccinated individuals; otherwise, COVID-19 vaccines were very efficacious against COVID-19.[43]
Limitations of the present study include consideration of the specific group of the population in sampling that can use Google Forms. However, future studies involving people with a broader educational background are required.
ConclusionThe present study concludes the beneficial effect of vaccination in reducing disease transmission, which is the primary objective of any immunization program. However, vaccination did not mitigate disease severity, hospitalization, and chest CT findings. In addition, no effect was shown on subsiding symptoms and their severity in vaccinated and nonvaccinated individuals. The study also assessed the distribution of vaccination events, such as the number of doses and AEFIs across age groups and gender. Further, it evaluates the effect of the number of doses on disease severity.
Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.
Research quality and ethics statement
The authors of this manuscript declare that this scientific work complies with reporting quality, formatting, and reproducibility guidelines set forth by the EQUATOR Network. The authors also attest that this observational study took consent from participants and was determined to require an Institutional Review Board/Ethics Committee Review. The corresponding protocol/approval number was obtained from the Office of Institutional Ethics Committee Mahatma Gandhi Medical College and Hospital, Jaipur, through letter number 471/MGMCandH/IEC/JPR/2021, dated May 31, 2021.
References
Comments (0)