Collins VP, Jones DT, Giannini C (2015) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:775–788
Article CAS PubMed PubMed Central Google Scholar
Rodriguez FJ, Scheithauer BW, Burger PC et al (2010) Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 34:147–160
Rodriguez EF, Scheithauer BW, Giannini C et al (2011) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121:407–420
Article CAS PubMed Google Scholar
Arai H, Ikota H, Sugawara K et al (2012) Nestin expression in brain tumors: its utility for pathological diagnosis and correlation with the prognosis of high-grade gliomas. Brain Tumor Pathol 29:160–167
Article CAS PubMed Google Scholar
Schmidt NO, Westphal M, Hagel C et al (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84:10–18
Article CAS PubMed Google Scholar
Kamamoto D, Ohara K, Kitamura Y et al (2018) Association between programmed cell death ligand-1 expression and extracranial metastasis in intracranial solitary fibrous tumor/hemangiopericytoma. J Neurooncol 139:251–259
Article CAS PubMed Google Scholar
Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820
WHO Classification of Tumours. Louis DN, Perry A, Wesseling P, Brat DJ, et al (2021) Central nervous system tumours. Lyon (France): International Agency for Research on Cancer. (WHO classification of tumours series, 5th ed.; vol. 6). Available from: https://tumourclassification.iarc.who.int/chapters/45. Accessed 3 May 2022.
Tamura R, Miwa T, Ohira T, Yoshida K (2017) Diagnosis and treatment for pure aqueductal tumor. J Clin Neurosci 44:260–263
Roth J, Chaichana KL, Jallo G et al (2015) True aqueductal tumors: a unique entity. Acta Neurochir (Wien) 157:169–177
Tamura R, Tanaka T, Miyake K et al (2016) Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget 7:52423–52435
Article PubMed PubMed Central Google Scholar
Tamura R, Tanaka T, Ohara K et al (2019) Persistent restoration to the immunosupportive tumor microenvironment in glioblastoma by bevacizumab. Cancer Sci 110:499–508
Article CAS PubMed Google Scholar
Takami H, Yoshida A, Fukushima S et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25:256–265
Article CAS PubMed Google Scholar
Hirose Y, Aldape K, Takahashi M et al (2001) Tissue microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP PCR) is an effective method to analyze genetic aberrations in invasive tumors. J Mol Diagn 3:62–67
Article CAS PubMed PubMed Central Google Scholar
Sasaki H, Zlatescu MC, Betensky RA et al (2001) PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol 159:359–367
Article CAS PubMed PubMed Central Google Scholar
Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405
Article CAS PubMed Google Scholar
Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773
Article CAS PubMed PubMed Central Google Scholar
Kitamura Y, Komori T, Shibuya M et al (2018) Comprehensive genetic characterization of rosette-forming glioneuronal tumors: independent component analysis by tissue microdissection. Brain Pathol 28:87–93
Article CAS PubMed Google Scholar
Khan MA, Godil SS, Tabani H et al (2012) Clinical review of pediatric pilocytic astrocytomas treated at a tertiary care hospital in Pakistan. Surg Neurol Int 3:90
Article PubMed PubMed Central Google Scholar
Sugita Y, Nakashima S, Ohshima K et al (2013) Anaplastic astrocytomas with abundant Rosenthal fibers in elderly patients: a diagnostic pitfall of high-grade gliomas. Neuropathology 33:533–540
Saito K, Toda M, Yoshida K (2015) Pilocytic astrocytoma with anaplastic features presenting good long-term clinical course after surgery alone: a case report. Childs Nerv Syst 31:167–171
Bowers DC, Gargan L, Kapur P, Reisch JS (2003) Study of the MIB-1 labeling index as a predictor of tumor progression in pilocytic astrocytomas in children and adolescents. J Clin Oncol 21:2968–2973
Casadei GP, Arrigoni GL, D’Angelo V, Bizzozero L (1990) Late malignant recurrence of childhood cerebellar astrocytoma. Clin Neuropathol 9:295–298
Ito S, Hoshino T, Shibuya M et al (1992) Proliferative characteristics of juvenile pilocytic astrocytomas determined by bromodeoxyuridine labeling. Neurosurgery 31:413–418
Article CAS PubMed Google Scholar
Mustafa D, Swagemakers S, French P et al (2013) Structural and expression differences between the vasculature of pilocytic astrocytomas and glioblastomas. J Neuropathol Exp Neurol 72:1171–1181
Article CAS PubMed Google Scholar
Almqvist PM, Mah R, Lendahl U et al (2002) Immunohistochemical detection of nestin in pediatric brain tumors. J Histochem Cytochem 50:147–158
Article CAS PubMed Google Scholar
Kitai R, Horita R, Sato K et al (2010) Nestin expression in astrocytic tumors delineates tumor infiltration. Brain Tumor Pathol 27:17–21
Article CAS PubMed Google Scholar
Zeng J, Zhang XK, Chen HD et al (2016) Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas. Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas. Oncotarget 7:8944–8955
Article PubMed PubMed Central Google Scholar
Yang I, Han SJ, Sughrue ME et al (2011) Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 115:505–511
Article CAS PubMed Google Scholar
Wei B, Wang L, Zhao X et al (2014) The upregulation of programmed death 1 on peripheral blood T cells of glioma is correlated with disease progression. Tumour Biol 35:2923–2929
Article CAS PubMed Google Scholar
Hawkins C, Walker E, Mohamed N et al (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17:4790–4798
Article CAS PubMed Google Scholar
Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119:641–649
Article CAS PubMed PubMed Central Google Scholar
Tihan T, Ersen A, Qaddoumi I et al (2012) Pathologic characteristics of pediatric intracranial pilocytic astrocytomas and their impact on outcome in 3 countries: a multi-institutional study. Am J Surg Pathol 36:43–55
Forshew T, Tatevossian RG, Lawson AR et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181
Article CAS PubMed Google Scholar
Sanoudou D, Tingby O, Ferguson-Smith MA et al (2010) Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82:1218–1222
Roth JJ, Fierst TM, Waanders AJ et al (2016) Whole chromosome 7 gain predicts higher risk of recurrence in pediatric pilocytic astrocytomas independently from KIAA1549-BRAF fusion status. J Neuropathol Exp Neurol 75:306–315
Article PubMed PubMed Central Google Scholar
Roberts P, Chumas PD, Picton S et al (2001) Review of the cytogenetics of 58 pediatric brain tumors. Cancer Genet Cytogenet 131:1–12
Article CAS PubMed Google Scholar
Sanoudou D, Tingby O, Ferguson-Smith MA et al (2000) Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82:1218–1222
Comments (0)