Metal-halide perovskites• Enhancement based on nanophotonic/plasmonic structures
174,175174. A. Kessel, C. Frydendahl, S. R. K. C. Indukuri, N. Mazurski, P. Arora, and U. Levy, Adv. Opt. Mater.
8, 2001627 (2020).
https://doi.org/10.1002/adom.202001627175. R. Siavash Moakhar, S. Gholipour, S. Masudy‐Panah, A. Seza, A. Mehdikhani, N. Riahi‐Noori, S. Tafazoli, N. Timasi, Y. F. Lim, and M. Saliba, Adv. Sci.
7, 1902448 (2020).
https://doi.org/10.1002/advs.201902448• Optimizing chemical composition and structure
178178. S. Wang, Z. Song, Y. Kong, and Q. Liu, J. Lumin.
212, 250 (2019).
https://doi.org/10.1016/j.jlumin.2019.04.036• Reducing crystal size near to or less than the Bohr’s radius
177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater.
8, 020904 (2020).
https://doi.org/10.1063/1.5136308• Ion substitution with composition adjustment
181181. H. Yin, J. Chen, P. Guan, D. Zheng, Q. Kong, S. Yang, P. Zhou, B. Yang, T. Pullerits, K. Han, H. Yin, D. Zheng, Q. Kong, P. Zhou, K. Han, P. Guan, S. Yang, B. Yang, and J. Chen, Angew. Chem.
133, 22875 (2021).
https://doi.org/10.1002/ange.202108133• Heterovalent substitution
176176. S. Khalfin and Y. Bekenstein, Nanoscale
11, 8665 (2019).
https://doi.org/10.1039/c9nr01031a• Doping with transition-metal ions
179179. S. Gull, M. H. Jamil, X. Zhang, H.-s. Kwok, and G. Li, ChemistryOpen
11, e202100285 (2022).
https://doi.org/10.1002/open.202100285• Reducing to lower dimensionality (e.g., 2D or 0D)
177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater.
8, 020904 (2020).
https://doi.org/10.1063/1.5136308• Affected by the morphology, structural interface, and phases
182182. R. Chuliá-Jordán and E. J. Juarez-Perez, J. Phys. Chem. C
126, 3466 (2022).
https://doi.org/10.1021/acs.jpcc.1c08867• Compositional engineering
177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater.
8, 020904 (2020).
https://doi.org/10.1063/1.5136308• Lower dimensionality tends to give shorter lifetime
183,184183. E. Ruggeri, M. Anaya, K. Gałkowski, G. Delport, F. U. Kosasih, A. Abfalterer, S. Mackowski, C. Ducati, S. D. Stranks, E. Ruggeri, M. Anaya, K. Gałkowski, G. Delport, A. Abfalterer, S. D. Stranks, S. Mackowski, F. U. Kosasih, and C. Ducati, Adv. Mater.
31, 1905247 (2019).
https://doi.org/10.1002/adma.201905247184. Q. Zhang, L. Chu, F. Zhou, W. Ji, and G. Eda, Adv. Mater.
30, 1704055 (2018).
https://doi.org/10.1002/adma.201704055• Increasing quantum confinement based on reduced dimensionality
177177. H. M. Jang, J.-S. Kim, J.-M. Heo, and T.-W. Lee, APL Mater.
8, 020904 (2020).
https://doi.org/10.1063/1.5136308• Chemically passivating defect states at the grain boundaries to eliminate nonradiative decay pathways
180180. D. W. Dequilettes, S. Koch, S. Burke, R. K. Paranji, A. J. Shropshire, M. E. Ziffer, and D. S. Ginger, ACS Energy Lett.
1, 438 (2016).
https://doi.org/10.1021/acsenergylett.6b00236• Ligand passivation will elongate the lifetime
180180. D. W. Dequilettes, S. Koch, S. Burke, R. K. Paranji, A. J. Shropshire, M. E. Ziffer, and D. S. Ginger, ACS Energy Lett.
1, 438 (2016).
https://doi.org/10.1021/acsenergylett.6b00236• Subject to temperature-/pump fluence-dependent lifetime
185185. Y. Chen, T. Wang, Z. Li, H. Li, T. Ye, C. Wetzel, H. Li, and S.-F. Shi, Sci. Rep.
8, 16482 (2018).
https://doi.org/10.1038/s41598-018-34645-8MOFs• Incorporation with metals of larger atomic numbers (e.g., Hf or Ln)
186,187186. S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset, and K. P. Lillerud, Phys. Rev. B
86, 125429 (2012).
https://doi.org/10.1103/physrevb.86.125429187. S. E. Gilson, M. Fairley, P. Julien, A. G. Oliver, S. L. Hanna, G. Arntz, O. K. Farha, J. A. Laverne, and P. C. Burns, J. Am. Chem. Soc.
142, 13299 (2020).
https://doi.org/10.1021/jacs.0c05272• π–π stacking between adjacent conjugated linkers or between a linker and a guest molecule
189189. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk, Chem. Soc. Rev.
38, 1330 (2009).
https://doi.org/10.1039/b802352m• Coordinating highly emissive chromophoric ligands to MOF backbone
192192. Y. Lin, L. Yu, H. Wang, and J. Li, CrystEngComm
22, 5946 (2020).
https://doi.org/10.1039/d0ce01092h• Adjusting dye-functionalized linkers and defects
196196. W. Schrimpf, J. Jiang, Z. Ji, P. Hirschle, D. C. Lamb, O. M. Yaghi, and S. Wuttke, Nat. Commun.
9, 1647 (2018).
https://doi.org/10.1038/s41467-018-04050-w• Formation of a donor–acceptor energy transfer system with rigidification structure
188188. R. Haldar, L. Heinke, C. Wöll, R. Haldar, L. Heinke, and C. Wöll, Adv. Mater.
32, 1905227 (2020).
https://doi.org/10.1002/adma.201905227• Deprotonation-triggered Stokes shift
190190. N. Zhao, F. Sun, S. Zhang, H. He, J. Liu, Q. Li, and G. Zhu, Inorg. Chem.
54, 65 (2015).
https://doi.org/10.1021/ic501560z• Encapsulation of luminescent guest (e.g., perovskite QDs) species into MOF pores
193,194193. X.-Y. Liu, W. P. Lustig, and J. Li, ACS Energy Lett.
5, 2671 (2020).
https://doi.org/10.1021/acsenergylett.0c01148194. Y. Zhang, Y. He, Z. Tang, W. Yu, Z. Zhang, Z. Chen, L. Xiao, J. j. Shi, S. Wang, B. Qu, Y. Zhang, Y. He, Z. Tang, W. Yu, Z. Zhang, Z. Chen, L. Xiao, J.-J. Shi, S. Wang, and B. Qu, Small
18, 2107161 (2022).
https://doi.org/10.1002/smll.202107161• Affected by the operational temperature
197197. J. Dong, P. Shen, S. Ying, Z.-J. Li, Y. D. Yuan, Y. Wang, X. Zheng, S. B. Peh, H. Yuan, G. Liu, Y. Cheng, Y. Pan, L. Shi, J. Zhang, D. Yuan, B. Liu, Z. Zhao, B. Z. Tang, and D. Zhao, Chem. Mater.
32, 6706 (2020).
https://doi.org/10.1021/acs.chemmater.0c02277• Hetero-ligand crystalline
191191. J. Perego, C. X. Bezuidenhout, I. Villa, F. Cova, R. Crapanzano, I. Frank, F. Pagano, N. Kratochwill, E. Auffray, S. Bracco, A. Vedda, C. Dujardin, P. E. Sozzani, F. Meinardi, A. Comotti, and A. Monguzzi, Nat. Commun.
13, 3504 (2022).
https://doi.org/10.1038/s41467-022-31163-0• Mixed linker strategy
195195. S. Wu, D. Ren, K. Zhou, H.-L. Xia, X.-Y. Liu, X. Wang, and J. Li, J. Am. Chem. Soc.
143, 10547 (2021).
https://doi.org/10.1021/jacs.1c04810Ln-based luminescent materials• Antenna effect: Incorporation of a chromophore with large absorption coefficient to efficiently harvest photons and transfer energy onto Ln3+ ions
198198. G. Bao, S. Wen, G. Lin, J. Yuan, J. Lin, K.-L. Wong, J.-C. G. Bünzli, and D. Jin, Coord. Chem. Rev.
429, 213642 (2021).
https://doi.org/10.1016/j.ccr.2020.213642• Optimizing chemical composition and structure
178178. S. Wang, Z. Song, Y. Kong, and Q. Liu, J. Lumin.
212, 250 (2019).
https://doi.org/10.1016/j.jlumin.2019.04.036• Optimizing the ligands coordinated to the Ln-ions to break the centrosymmetry and allow for less forbidden transition
200200. N. B. D. Lima, S. M. C. Gonçalves, S. A. Júnior, and A. M. Simas, Sci. Rep.
3, 2395 (2013).
https://doi.org/10.1038/srep02395• Adjusting the concentration of sensitizer and emitter
202202. M. Wang, C. Hu, and Q. Su, Biosensors
12, 131 (2022).
https://doi.org/10.3390/bios12020131• Adjusting the energy-transfer channel• Plasmonic enhancement
199199. R. Marin, D. Jaque, and A. Benayas, Nanoscale Horiz.
6, 209 (2021).
https://doi.org/10.1039/d0nh00627k• Antenna effect
198198. G. Bao, S. Wen, G. Lin, J. Yuan, J. Lin, K.-L. Wong, J.-C. G. Bünzli, and D. Jin, Coord. Chem. Rev.
429, 213642 (2021).
https://doi.org/10.1016/j.ccr.2020.213642• The PLQY in solution tends to be smaller than in solids• Inorganic NPs can increase the duration of Ln3+ emission due to lower frequency oscillations in the inorganic lattice
201201. P. Manna, M. Bhar, and P. Mukherjee, J. Lumin.
235, 118052 (2021).
https://doi.org/10.1016/j.jlumin.2021.118052• Coupling with semiconductor nanocrystals
199199. R. Marin, D. Jaque, and A. Benayas, Nanoscale Horiz.
6, 209 (2021).
https://doi.org/10.1039/d0nh00627k• Incorporation of Ln3+ in an appropriate inorganic nanoparticle to minimize the nonradiative decay rate
201201. P. Manna, M. Bhar, and P. Mukherjee, J. Lumin.
235, 118052 (2021).
https://doi.org/10.1016/j.jlumin.2021.118052• Affected by the operational temperature
203203. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, New J. Chem.
35, 1177 (2011).
https://doi.org/10.1039/c0nj01010cAlloyed semiconductor QDs (with core/shell structure)• Increasing the lateral dimension
204204. G. Nagamine, B. G. Jeong, T. A. C. Ferreira, J. H. Chang, K. Park, D. C. Lee, W. K. Bae, and L. A. Padilha, ACS Photonics
7, 2252 (2020).
https://doi.org/10.1021/acsphotonics.0c00812• Growing thick shell to form a type-II (or quasi-type-II) band structure
207,208207. S. Sadeghi, H. Bahmani Jalali, R. Melikov, B. Ganesh Kumar, M. Mohammadi Aria, C. W. Ow-Yang, and S. Nizamoglu, ACS Appl. Mater. Interfaces
10, 12975 (2018).
https://doi.org/10.1021/acsami.7b19144208. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, Nat. Photonics
8, 392 (2014).
https://doi.org/10.1038/nphoton.2014.54• Formation of a donor–acceptor energy transfer system by embedding small-bandgap QDs with high PLQY into a matrix of larger-bandgap QDs with lower PLQY
210210. N. J. L. K. Davis, J. R. Allardice, J. Xiao, A. Karani, T. C. Jellicoe, A. Rao, and N. C. Greenham, Mater. Horiz.
6, 137 (2019).
https://doi.org/10.1039/c8mh01122b• Affected by the core/shell structures (e.g., core size, shell passivation), concentration of sensitizer and emitter, energy transfer channel and operational temperature
202202. M. Wang, C. Hu, and Q. Su, Biosensors
12, 131 (2022).
https://doi.org/10.3390/bios12020131• Grows tetrapod QDs
205205. W. Xing, S. Zhang, R. An, W. Bi, C. Geng, and S. Xu, Nanoscale
13, 19474 (2021).
https://doi.org/10.1039/d1nr04070g• Adjusting the geometry structure to introduce self-trapped excitons
209209. Z. Wang, W. Yang, and Y. Wang, J. Phys. Chem. C
121, 20031 (2017).
https://doi.org/10.1021/acs.jpcc.7b05643• Formation of coupled colloidal QD molecules
206206. Y. E. Panfil, D. Shamalia, J. Cui, S. Koley, and U. Banin, J. Chem. Phys.
151, 224501 (2019).
https://doi.org/10.1063/1.5128086
Comments (0)