Advances in Cartilage Repair

Barbier O. Amouyel T. de l'Escalopier N. et al.

Osteochondral lesion of the talus: what are we talking about?.

Orthop Traumatol Surg Res. 2021; 107: 103068View in Article Scopus (4) PubMed Abstract Full Text Full Text PDF Google ScholarO'Loughlin P.F. Heyworth B.E. Kennedy J.G.

Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle.

Am J Sports Med. 2010; 38: 392-404View in Article Scopus (219) PubMed Crossref Google ScholarHamilton C. Burgul R. Kourkounis G. et al.

Osteochondral defects of the talus: radiological appearance and surgical candidate profiling - A retrospective analysis.

Foot (Edinb). 2021; 46: 101767View in Article Scopus (1) PubMed Crossref Google ScholarLooze C.A. Capo J. Ryan M.K. et al.

Evaluation and management of osteochondral lesions of the talus.

Cartilage. 2017; 8: 19-30View in Article Scopus (78) PubMed Crossref Google ScholarShimozono Y. Coale M. Yasui Y. et al.

Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis.

Am J Sports Med. 2018; 46: 642-648View in Article Scopus (51) PubMed Crossref Google ScholarLan T. McCarthy H.S. Hulme C.H. et al.

The management of talar osteochondral lesions - current concepts.

J Arthrosc Jt Surg. 2021; 8: 231-237View in Article Scopus (4) PubMed Crossref Google ScholarKawasaki K. Ochi M. Uchio Y. et al.

Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels.

J Cell Physiol. 1999; 179: 142-148View in Article Scopus (231) PubMed Crossref Google ScholarRamponi L. Yasui Y. Murawski C.D. et al.

Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review.

Am J Sports Med. 2017; 45: 1698-1705View in Article Scopus (132) PubMed Crossref Google ScholarPark J.H. Park K.H. Cho J.Y. et al.

Bone marrow stimulation for osteochondral lesions of the talus: are clinical outcomes maintained 10 years later?.

Am J Sports Med. 2021; 49: 1220-1226View in Article Scopus (8) PubMed Crossref Google ScholarMurawski C.D. Foo L.F. Kennedy J.G.

A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern.

Cartilage. 2010; 1: 137-144View in Article Scopus (71) PubMed Crossref Google ScholarSteadman J.R. Rodkey W.G. Rodrigo J.J.

Microfracture: surgical technique and rehabilitation to treat chondral defects.

Clin Orthop Relat Res. 2001; : S362-S369https://doi.org/10.1097/00003086-200110001-00033View in Article Scopus (940) PubMed Crossref Google ScholarSmyth N.A. Murawski C.D. Adams Jr., S.B. et al.

Osteochondral allograft: proceedings of the international consensus meeting on cartilage repair of the ankle.

Foot Ankle Int. 2018; 39: 35s-40sView in Article Scopus (26) PubMed Crossref Google ScholarRikken Q.G.H. Dahmen J. Reilingh M.L. et al.

Outcomes of bone marrow stimulation for secondary osteochondral lesions of the talus equal outcomes for primary lesions.

Cartilage. 2021; 13: 1429s-1437sView in Article Scopus (2) PubMed Crossref Google ScholarHannon C.P. Ross K.A. Murawski C.D. et al.

Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes.

Arthroscopy. 2016; 32: 339-347View in Article Scopus (74) PubMed Abstract Full Text Full Text PDF Google ScholarShapiro F. Koide S. Glimcher M.J.

Cell origin and differentiation in the repair of full-thickness defects of articular cartilage.

J Bone Joint Surg Am. 1993; 75: 532-553View in Article Scopus (1074) PubMed Crossref Google ScholarLee K.B. Bai L.B. Yoon T.R. et al.

Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus.

Am J Sports Med. 2009; 37: 63s-70sView in Article Scopus (115) PubMed Crossref Google ScholarBecher C. Driessen A. Hess T. et al.

Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up.

Knee Surg Sports Traumatol Arthrosc. 2010; 18: 656-663View in Article Scopus (129) PubMed Crossref Google ScholarMadry H. van Dijk C.N. Mueller-Gerbl M.

The basic science of the subchondral bone.

Knee Surg Sports Traumatol Arthrosc. 2010; 18: 419-433View in Article Scopus (391) PubMed Crossref Google ScholarChen H. Sun J. Hoemann C.D. et al.

Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair.

J Orthopaedic Res. 2009; 27: 1432-1438View in Article Scopus (188) PubMed Crossref Google ScholarOrth P. Goebel L. Wolfram U. et al.

Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months.

Am J Sports Med. 2012; 40: 828-836View in Article Scopus (85) PubMed Crossref Google ScholarSeow D. Yasui Y. Hutchinson I.D. et al.

The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies.

Cartilage. 2019; 10: 70-81View in Article Scopus (24) PubMed Crossref Google ScholarBrittberg M. Lindahl A. Nilsson A. et al.

Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.

N Engl J Med. 1994; 331: 889-895View in Article Scopus (4605) PubMed Crossref Google ScholarKwak S.K. Kern B.S. Ferkel R.D. et al.

Autologous chondrocyte implantation of the ankle: 2- to 10-year results.

Am J Sports Med. 2014; 42: 2156-2164View in Article Scopus (53) PubMed Crossref Google ScholarGiannini S. Buda R. Ruffilli A. et al.

Arthroscopic autologous chondrocyte implantation in the ankle joint.

Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1311-1319View in Article Scopus (55) PubMed Crossref Google ScholarLenz C.G. Tan S. Carey A.L. et al.

Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus.

Foot Ankle Int. 2020; 41: 1099-1105View in Article Scopus (20) PubMed Crossref Google ScholarGiza E. Sullivan M. Ocel D. et al.

Matrix-induced autologous chondrocyte implantation of talus articular defects.

Foot Ankle Int. 2010; 31: 747-753View in Article Scopus (97) PubMed Crossref Google ScholarLee Y.H. Suzer F. Thermann H.

Autologous matrix-induced chondrogenesis in the knee: a review.

Cartilage. 2014; 5: 145-153View in Article Scopus (65) PubMed Crossref Google ScholarWeigelt L. Hartmann R. Pfirrmann C. et al.

Autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: a clinical and radiological 2- to 8-year follow-up study.

Am J Sports Med. 2019; 47: 1679-1686View in Article Scopus (39) PubMed Crossref Google ScholarGiannini S. Buda R. Battaglia M. et al.

One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction.

Am J Sports Med. 2013; 41: 511-518View in Article Scopus (136) PubMed Crossref Google ScholarGiannini S. Buda R. Cavallo M. et al.

Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation.

Injury. 2010; 41: 1196-1203View in Article Scopus (135) PubMed Abstract Full Text Full Text PDF Google ScholarRiff A.J. Davey A. Cole B.J.

Emerging technologies in cartilage restoration.

in: Yanke A.B. Cole B.J. Joint preservation of the knee: a clinical casebook. Springer International Publishing, Cham (Switzerland)2019: 295-319View in Article Scopus (2) Crossref Google ScholarFortier L.A. Chapman H.S. Pownder S.L. et al.

BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss.

Am J Sports Med. 2016; 44: 2366-2374

Comments (0)

No login
gif