Jones N (2012) Science in three dimensions: the print revolution. Nature 487(7405):22–23. https://doi.org/10.1038/487022a
Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001
Vaneker T, Bernard A, Moroni G, Gibson I, Zhang Y (2020) Design for additive manufacturing: framework and methodology. CIRP Ann 69(2):578–599. https://doi.org/10.1016/j.cirp.2020.05.006
Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Func Mater 30(43):2003062. https://doi.org/10.1002/adfm.202003062
Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162. https://doi.org/10.1016/j.bushor.2011.11.003
Sanchez-Rexach E, Johnston TG, Jehanno C, Sardon H, Nelson A (2020) Sustainable materials and chemical processes for additive manufacturing. Chem Mater 32(17):7105–7119. https://doi.org/10.1021/acs.chemmater.0c02008
Bhatia A, Sehgal AK (2021) Additive manufacturing materials, methods and applications: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04.379
Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32(1):135–148. https://doi.org/10.1007/s00366-015-0407-0
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074
Tibbits S (2014) 4D Printing: multi-material shape change. Archit Des 84(1):116–121. https://doi.org/10.1002/ad.1710
Pagac M, Hajnys J, Ma Q-P, Jancar L, Jansa J, Stefek P et al (2021) A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3d printing. Polymers 13(4):598
Kodama H (1981) Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52(11):1770–1773. https://doi.org/10.1063/1.1136492
Hull CW (1985) Apparatus for production of three-dimensional objects by stereolithography. United States
Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32(1):54–64. https://doi.org/10.1016/j.dental.2015.09.018
Oesterreicher A, Wiener J, Roth M, Moser A, Gmeiner R, Edler M et al (2016) Tough and degradable photopolymers derived from alkyne monomers for 3D printing of biomedical materials. Polym Chem 7(32):5169–5180. https://doi.org/10.1039/C6PY01132B
Ikuta K, Hirowatari K (1993) Real three dimensional micro fabrication using stereo lithography and metal molding. In: Proceedings IEEE Micro Electro Mechanical Systems, pp 42–47
Joseph M, Desimone ETS, Alexander E, Philip M (2014) Desimone. Rapid 3D continuous printing of casting molds for metals and other materials
Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X (2020) Photo-curing 3D printing technique and its challenges. Bioactive Materials 5(1):110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003
Xing J-F, Zheng M-L, Duan X-M (2015) Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 44(15):5031–5039. https://doi.org/10.1039/C5CS00278H
Bhattacharya I, Kelly B, Shusteff M, Spadaccini C, Taylor H (2018) Computed axial lithography: volumetric 3D printing of arbitrary geometries (Conference Presentation). SPIE Commercial + Scientific Sensing and Imaging. SPIE
Li H, Fan W, Zhu X (2020) Three-dimensional printing: the potential technology widely used in medical fields. J Biomed Mater Res Part A 108(11):2217–2229. https://doi.org/10.1002/jbm.a.36979
Enders A, Siller IG, Urmann K, Hoffmann MR, Bahnemann J (2019) 3D printed microfluidic mixers—a comparative study on mixing unit performances. Small 15(2):1804326. https://doi.org/10.1002/smll.201804326
Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188. https://doi.org/10.1016/j.biomaterials.2017.06.005
Ayub NF, Hashim S, Jamaluddin J, Adrus N (2017) New UV LED curing approach for polyacrylamide and poly(N-isopropylacrylamide) hydrogels. New J Chem 41(13):5613–5619. https://doi.org/10.1039/C7NJ00176B
Juskova P, Ollitrault A, Serra M, Viovy J-L, Malaquin L (2018) Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: application to microfluidic deterministic lateral displacement device. Anal Chim Acta 1000:239–247. https://doi.org/10.1016/j.aca.2017.11.062
Liu Y, Hu Q, Zhang F, Tuck C, Irvine D, Hague R et al (2016) Additive manufacture of three dimensional nanocomposite based objects through multiphoton fabrication. Polymers 8(9):325
Cheng Y-L, Kao H-L (2015) Study on visible-light-curable polycarprolactone and poly(ethylene glycol) diacrylate for LCD-projected maskless additive manufacturing system. SPIE Organic Photonics + Electronics. SPIE
Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB et al (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620. https://doi.org/10.1038/s41467-018-03759-y
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S et al (2020) Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev 120(19):10695–10743. https://doi.org/10.1021/acs.chemrev.9b00810
Gonzalez G, Roppolo I, Pirri CF, Chiappone A (2022) Current and emerging trends in polymeric 3D printed microfluidic devices. Add Manufact 55:102867. https://doi.org/10.1016/j.addma.2022.102867
Valverde D, Porcar R, Zanatta M, Alcalde S, Altava B, Sans V et al (2022) Towards highly efficient continuous-flow catalytic carbon dioxide cycloadditions with additively manufactured reactors. Green Chem 24(8):3300–3308. https://doi.org/10.1039/D1GC04593H
Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D et al (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352. https://doi.org/10.1126/science.aaa2397
Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20(6):314–322. https://doi.org/10.1016/j.mattod.2017.06.004
Purbrick MD (1996) Photoinitiation, photopolymerization and photocuring. J.-P. Fouassier. Hanser Publishers, Munich, 1995. Polym Int 40(4):315. https://doi.org/10.1002/(SICI)1097-0126(199608)40:4<315::AID-PI566>3.0.CO;2-T.
Yagci Y, Jockusch S, Turro NJ (2010) Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43(15):6245–6260. https://doi.org/10.1021/ma1007545
Zhou J, Allonas X, Ibrahim A, Liu X (2019) Progress in the development of polymeric and multifunctional photoinitiators. Prog Polym Sci 99:101165. https://doi.org/10.1016/j.progpolymsci.2019.101165
Garra P, Fouassier JP, Lakhdar S, Yagci Y, Lalevée J (2020) Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Prog Polym Sci 107:101277. https://doi.org/10.1016/j.progpolymsci.2020.101277
Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49(9):1540–1573. https://doi.org/10.1002/anie.200903924
From the Preface to the First Edition (1972) In: Van Krevelen DW, Te Nijenhuis K (eds) Properties of Polymers (Fourth Edition). Amsterdam: Elsevier; 2009. p. vii.
Nicholson JW (2012) The chemistry of polymers: edition 4. RSC
Fouassier JP, Rabek JF (1993) Radiation curing in polymer science and technology: fundamentals and methods Radiation Curing in Polymer Science and Technology. Springer, Dordrecht
Ahn D, Stevens LM, Zhou K, Page ZA (2020) Rapid high-resolution visible light 3D printing. ACS Cent Sci 6(9):1555–1563. https://doi.org/10.1021/acscentsci.0c00929
Xiao P, Zhang J (2021) 3D Printing with Light, Berlin, Boston: De Gruyter. https://doi.org/10.1515/97831105705883D
Gastaldi M, Cardano F, Zanetti M, Viscardi G, Barolo C, Bordiga S et al (2021) Functional dyes in polymeric 3D printing: applications and perspectives. ACS Mater Lett 3(1):1–17. https://doi.org/10.1021/acsmaterialslett.0c00455
Vitale A, Cabral JT (2016) Frontal conversion and uniformity in 3D printing by photopolymerisation. Mater (Basel Switzerl) 9(9):760. https://doi.org/10.3390/ma9090760
Lin J-T, Liu H-W, Chen K-T, Cheng D-C (2019) Modeling the kinetics, curing depth, and efficacy of radical-mediated photopolymerization: the role of oxygen inhibition, viscosity, and dynamic light intensity. Front Chem 7:760
Cook CC, Fong EJ, Schwartz JJ, Porcincula DH, Kaczmarek AC, Oakdale JS et al (2020) Highly tunable thiol-ene photoresins for volumetric additive manufacturing. Adv Mater 32(47):2003376. https://doi.org/10.1002/adma.202003376
He Y, Li N, Xiang Z, Rong Y, Zhu L, Huang X (2022) Natural polyphenol as radical inhibitors used for DLP-based 3D printing of photosensitive gels. Mater Today Commun 33:104698. https://doi.org/10.1016/j.mtcomm.2022.104698
Layani M, Wang X, Magdassi S (2018) Novel materials for 3D printing by photopolymerization. Adv Mater 30(41):1706344. https://doi.org/10.1002/adma.201706344
Crivello JV, Reichmanis E (2014) Photopolymer materials and processes for advanced technologies. Chem Mater 26(1):533–548. https://doi.org/10.1021/cm402262g
Appuhamillage GA, Chartrain N, Meenakshisundaram V, Feller KD, Williams CB, Long TE (2019) 110th anniversary: vat photopolymerization-based additive manufacturing: current trends and
Comments (0)