Figure 1. (A) SMART analysis of DDX41s. Coiled coil domain, DEAD domain, HELIC domain, and ZnF_C2HC domain were labeled in the sequence. (B) Distributions of scDDX41 expression in different tissues of mandarin fish. The expression levels of scDDX41 were detected by RT-qPCR. (C) Phylogenetic tree of DDX41 proteins from various species. A phylogenetic tree was constructed using the Neighbor-Joining method in MEGA v10.0, with 1000 bootstrap replications. The bootstrap values were indicated at the nodes of the tree. (D) Expression levels of scDDX41 in cells treated with poly(I:C) at indicated times. (E) Expression levels of scDDX41 in cells treated with poly (dA:dT) at indicated times. (F) Expression levels of scDDX41 in cells infected with MRV at indicated times. The β-actin gene served as internal control to calibrate the cDNA template for all samples. Vertical bars represent ±SD (n = 3). Statistical significance was indicated by asterisks, with ** referring to p < 0.01. ns, non-significant.
Figure 1. (A) SMART analysis of DDX41s. Coiled coil domain, DEAD domain, HELIC domain, and ZnF_C2HC domain were labeled in the sequence. (B) Distributions of scDDX41 expression in different tissues of mandarin fish. The expression levels of scDDX41 were detected by RT-qPCR. (C) Phylogenetic tree of DDX41 proteins from various species. A phylogenetic tree was constructed using the Neighbor-Joining method in MEGA v10.0, with 1000 bootstrap replications. The bootstrap values were indicated at the nodes of the tree. (D) Expression levels of scDDX41 in cells treated with poly(I:C) at indicated times. (E) Expression levels of scDDX41 in cells treated with poly (dA:dT) at indicated times. (F) Expression levels of scDDX41 in cells infected with MRV at indicated times. The β-actin gene served as internal control to calibrate the cDNA template for all samples. Vertical bars represent ±SD (n = 3). Statistical significance was indicated by asterisks, with ** referring to p < 0.01. ns, non-significant.
Figure 2. scDDX41 induced the activities of IFN-β-luc and NF-κB-luc promoters. (A) Cells were transfected with 0.2, 0.4, 0.6, or 0.8 μg of scDDX41 expression plasmid or an empty vector together with IFN-β-luc (0.4 μg/well) and pRL-TK (0.04 μg/well) plasmids. Luciferase assays were performed 36 h after the transfection. (B) Cells were transfected with 0.2, 0.4, 0.6, or 0.8 μg of scDDX41 expression plasmid or an empty vector together with NF-κB-luc (0.4 μg/well) and pRL-TK (0.05 μg/well). Luciferase assays were performed 36 h after the transfection. (C) Schematic of full-length and scDDX41 mutants with the DEAD domain, HELIC domain, and residue numbers as indicated. Various scDDX41 fragments were inserted into the C-terminus of pCMV-myc. (D,E) DEAD and HELIC domains of scDDX41 for IFN and NF-κB activation. Cells were transfected with 0.4 μg/well of various expression plasmids of scDDX41, scDDX41 mutants, or empty vector together with the reporter plasmid 0.04 μg/well pRL-TK as well as 0.4 μg/well of IFN-β-luc or NF-κB-luc plasmid. Luciferase assays were performed 36 h after the transfection. All luciferase assays were repeated at least three times, and data are means ±SD (n = 3) from single representative experiments. * p < 0.05, ** p < 0.01 between normal cells and stimulated cells.
Figure 2. scDDX41 induced the activities of IFN-β-luc and NF-κB-luc promoters. (A) Cells were transfected with 0.2, 0.4, 0.6, or 0.8 μg of scDDX41 expression plasmid or an empty vector together with IFN-β-luc (0.4 μg/well) and pRL-TK (0.04 μg/well) plasmids. Luciferase assays were performed 36 h after the transfection. (B) Cells were transfected with 0.2, 0.4, 0.6, or 0.8 μg of scDDX41 expression plasmid or an empty vector together with NF-κB-luc (0.4 μg/well) and pRL-TK (0.05 μg/well). Luciferase assays were performed 36 h after the transfection. (C) Schematic of full-length and scDDX41 mutants with the DEAD domain, HELIC domain, and residue numbers as indicated. Various scDDX41 fragments were inserted into the C-terminus of pCMV-myc. (D,E) DEAD and HELIC domains of scDDX41 for IFN and NF-κB activation. Cells were transfected with 0.4 μg/well of various expression plasmids of scDDX41, scDDX41 mutants, or empty vector together with the reporter plasmid 0.04 μg/well pRL-TK as well as 0.4 μg/well of IFN-β-luc or NF-κB-luc plasmid. Luciferase assays were performed 36 h after the transfection. All luciferase assays were repeated at least three times, and data are means ±SD (n = 3) from single representative experiments. * p < 0.05, ** p < 0.01 between normal cells and stimulated cells.
Figure 3. Overexpression of scDDX41 induces the expression of IFN-I, ISGs, and inflammatory cytokines. After transfection with scDDX41-myc or pCMV-myc at 24 h, cells were harvested and the expression levels of scDDX41 (A), scIFN-h (B), scMx (C), scISG15 (D), scViperin (E) and scTNF-α (F) genes were detected. Overexpression of scHELIC and scDEAD induced the expression of scMx (G) and scISG15 (H) in MFF-1 cells. The β-actin gene served as the internal control to calibrate the cDNA template for all samples. Vertical bars represent ±SD (n = 3). Statistical significance is indicated by asterisks, with ** referring to p < 0.01.
Figure 3. Overexpression of scDDX41 induces the expression of IFN-I, ISGs, and inflammatory cytokines. After transfection with scDDX41-myc or pCMV-myc at 24 h, cells were harvested and the expression levels of scDDX41 (A), scIFN-h (B), scMx (C), scISG15 (D), scViperin (E) and scTNF-α (F) genes were detected. Overexpression of scHELIC and scDEAD induced the expression of scMx (G) and scISG15 (H) in MFF-1 cells. The β-actin gene served as the internal control to calibrate the cDNA template for all samples. Vertical bars represent ±SD (n = 3). Statistical significance is indicated by asterisks, with ** referring to p < 0.01.
Figure 4. Identification of the interaction between scDDX41 and scSTING by Co-IP assay. (A) scDDX41 interacted with scSTING. Cells were transfected with the indicated plasmids. At 36 h post-transfection, the cell lysates were precipitated with an anti-flag or anti-myc mAb in conjunction with protein G-Sepharose beads and detected by WB analysis using anti-myc or anti-flag mAbs. The expression of the transfected proteins was analyzed by immunoblotting with anti-myc and anti-flag mAbs. (B) DEAD and HELIC domains of scDDX41 interacted with scSTING. Cells were co-transfected with DEAD-myc, HELIC-YFP, and scSTING-flag or empty vector. Immunoprecipitation assays with anti-flag antibody (IP: Flag) and Western blot analysis were performed with anti-Flag, anti-myc, or anti-YFP antibodies. (C) DEAD domain interacted with scSTING-NTD and scSTING-CTD. Cells were co-transfected with myc-DEAD and flag-scSTING-NTD, flag-scSTING-CTD, or empty vector. Immunoprecipitation assays with anti-flag antibody (IP: Flag) and WB analysis were performed with anti-Flag or anti-myc antibodies. (D) HELIC domain interacted with scSTING-NTD but not with scSTING-CTD. Cells were co-transfected with HELIC-YFP and flag-scSTING-NTD, flag-scSTING-CTD, or empty vector. Immunoprecipitation assays with anti-flag antibody (IP: Flag) and WB analysis were performed with anti-flag or anti-YFP antibodies.
Figure 4. Identification of the interaction between scDDX41 and scSTING by Co-IP assay. (A) scDDX41 interacted with scSTING. Cells were transfected with the indicated plasmids. At 36 h post-transfection, the cell lysates were precipitated with an anti-flag or anti-myc mAb in conjunction with protein G-Sepharose beads and detected by WB analysis using anti-myc or anti-flag mAbs. The expression of the transfected proteins was analyzed by immunoblotting with anti-myc and anti-flag mAbs. (B) DEAD and HELIC domains of scDDX41 interacted with scSTING. Cells were co-transfected with DEAD-myc, HELIC-YFP, and scSTING-flag or empty vector. Immunoprecipitation assays with anti-flag antibody (IP: Flag) and Western blot analysis were performed with anti-Flag, anti-myc, or anti-YFP antibodies. (C) DEAD domain interacted with scSTING-NTD and scSTING-CTD. Cells were co-transfected with myc-DEAD and flag-scSTING-NTD, flag-scSTING-CTD, or empty vector. Immunoprecipitation assays with anti-flag antibody (IP: Flag) and WB analysis were performed with anti-Flag or anti-myc antibodies. (D) HELIC domain interacted with scSTING-NTD but not with scSTING-CTD. Cells were co-transfected with HELIC-YFP and flag-scSTING-NTD, flag-scSTING-CTD, or empty vector. Immunoprecipitation assays with anti-flag antibody (IP: Flag) and WB analysis were performed with anti-flag or anti-YFP antibodies.
Figure 5. Involvement of scDDX41 in scSTING-mediated IFN expression, and scDDX41 recognizes dsDNA through the DEAD domain. (A) Cells transfected with an IFN-β-luc 400 ng/well and TK (40 ng/well) plus 400 ng/well) of the expression vectors for pCMV-myc, pCMV-myc and scDDX41-myc, pCMV-myc and scSTING-myc, scDDX41-myc, and scSTING-myc. Vertical bars represent ±SD (n = 3). Statistical significance is indicated by asterisks, with ** referring to p < 0.01. scDDX41 enhanced the IFN-I response induced by STING. (B–E) Cells seeded in 6-well plates were transfected or co-transfected with scDDX41 (400 ng/well), and scSTING (400 ng/well). The cells transfected with pCMV-myc acted as negative control. The expression levels of interferon signaling molecules including scIFN-h, scMx, scISG15, and scViperin were examined using RT-qPCR. The β-actin gene served as the internal control to calibrate the cDNA template for all samples. Vertical bars represent ±SD (n = 3). Statistical significance is indicated by asterisks, with ** referring to p < 0.01. (F) scDDX41 recognizes ISD through the DEAD domain using EMSA with biotin-labeled (Bio-) or unlabeled (Unbio-) probes ISD. The black lines indicate where parts of the image were joined. (G) Immunoblot analysis of the immunoprecipitated purified myc-tagged hsDDX41, scDDX41, or scDDX41ΔDEAD recombinant proteins incubated individually with biotinylated ISD and probed with anti-myc antibodies.
Figure 5. Involvement of scDDX41 in scSTING-mediated IFN expression, and scDDX41 recognizes dsDNA through the DEAD domain. (A) Cells transfected with an IFN-β-luc 400 ng/well and TK (40 ng/well) plus 400 ng/well) of the expression vectors for pCMV-myc, pCMV-myc and scDDX41-myc, pCMV-myc and scSTING-myc, scDDX41-myc, and scSTING-myc. Vertical bars represent ±SD (n = 3). Statistical significance is indicated by asterisks, with ** referring to p < 0.01. scDDX41 enhanced the IFN-I response induced by STING. (B–E) Cells seeded in 6-well plates were transfected or co-transfected with scDDX41 (400 ng/well), and scSTING (400 ng/well). The cells transfected with pCMV-myc acted as negative control. The expression levels of interferon signaling molecules including scIFN-h, scMx, scISG15, and scViperin were examined using RT-qPCR. The β-actin gene served as the internal control to calibrate the cDNA template for all samples. Vertical bars represent ±SD (n = 3). Statistical significance is indicated by asterisks, with ** referring to p < 0.01. (F) scDDX41 recognizes ISD through the DEAD domain using EMSA with biotin-labeled (Bio-) or unlabeled (Unbio-) probes ISD. The black lines indicate where parts of the image were joined. (G) Immunoblot analysis of the immunoprecipitated purified myc-tagged hsDDX41, scDDX41, or scDDX41ΔDEAD recombinant proteins incubated individually with biotinylated ISD and probed with anti-myc antibodies.
Table 1. Primers used for cloning.
Table 1. Primers used for cloning.
NamesSequence (5′–3′)5′ RACE-FCTAATAGCACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT5′ RACE-RTGAGATGCTGATGCTGGTCAAGGAG3′ RACE-FTGATGGATCTTAAAGCCCTGC3′ RACE-RACTCTGCGTTGATACCACTGCTTGCCCTATAGTGAGTGCTATTAGscDDX41-FCGGAATTCCGGAGACCGACAATCGACCCscDDX41-RGGGGTACCTTAGAAGTCCATTGAGCTATGAGCscDEAD-FCGGAATTCCGCCACCAGCAATTCTAAAAGGscDEAD-RGGGGTACCTTACATCTTGGCCTCCTCTTTGscHELIC-FCGGAATTCCGCTTTTATTTGCTGAGAAGAAGGscHELIC-RGGGGTACCTTAATTAATGAACGTAGTGGCscHELIC-YFP-FCGGAATTCCGATGCTTTTATTTGCTGAGAAGAAGscHELIC-YFP-RGGGGTACCCCATTAATGAACGTAGTGGCISD-FTACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA ISD-RTGTAGATCATGTACAGATCAGTCATAGATCACTAGTAGATCTGTATable 2. Primers used for RT-qPCR.
Table 2. Primers used for RT-qPCR.
Gene NamesPrimersSequences (5′–3′)Primer EfficiencyscDDX41Forward
Comments (0)