Robinson, P.K.: Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015). https://doi.org/10.1042/BSE0590001
Rizvi, S.A.A., Saleh, A.M.: Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26, 64–70 (2018). https://doi.org/10.1016/j.jsps.2017.10.012
Sabu, A.: Sources, properties and applications of microbial therapeutic enzymes. Indian J. Biotechnol. 2, 334–341 (2003)
Vellard, M.: The enzyme as drug : application of enzymes as pharmaceuticals. Curr. Opin. Biotechnol. 14, 444–450 (2003). https://doi.org/10.1016/S0958-1669(03)00092-2
Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A., Mathew, A.K., Madhavan, A., Rebello, S., Pandey, A.: Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56, 16–30 (2018)
Emerich, D.F., Thanos, C.G.: The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng. 23, 171–184 (2006). https://doi.org/10.1016/j.bioeng.2006.05.026
Singh, R., Lillard, J.W.: Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009). https://doi.org/10.1016/j.yexmp.2008.12.004
Biswas, A.K., Islam, M.R., Choudhury, Z.S., Mostafa, A., Kadir, M.F.: Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol. (2014). https://doi.org/10.1088/2043-6262/5/4/043001
Hanahan, D., Weinberg, R. A.: Biological hallmarks of cancer. Holland‐Frei Cancer Medicine, pp 1–10 (2016).
Baudino, T.A.: Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 12, 3–20 (2015)
Oerlemans, C., Bult, W., Bos, M., Storm, G., Nijsen, J.F.W., Hennink, W.E.: Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm. Res. 27, 2569–2589 (2010). https://doi.org/10.1007/s11095-010-0233-4
Zhang, J., Marksaltzman, W.: Engineering biodegradable nanoparticles for drug and gene delivery. Chem. Eng. Prog. 109, 25–30 (2013)
Li, X., Naeem, A., Xiao, S., Hu, L., Zhang, J., Zheng, Q.: Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics. 17(14), 6–1292 (2022)
Rizvi, S.A.A., Saleh, A.M.: Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26, 64–70 (2018). https://doi.org/10.1016/j.jsps.2017.10.012
Kolluru, L.P., Rizvi, S.A.A., D’Souza, M., D’Souza, M.J.: Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J. Drug Target. 21, 77–86 (2013). https://doi.org/10.3109/1061186X.2012.729214
Wolfbeis, O.S.: An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015). https://doi.org/10.1039/c4cs00392f
Janib, S.M., Moses, A.S., MacKay, J.A.: Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010). https://doi.org/10.1016/j.addr.2010.08.004
Bhojani, M.S., Dort, M.V., Rehemtulla, A., Ross, B.D.: Targeted imaging and therapy of brain cancer using brain tumors : current status. Mol. Pharm. 7, 1921–1929 (2010)
Bartlett, J.G., Moore, R.D.: Improving HIV therapy. Sci. Am. (1998). https://doi.org/10.1038/scientificamerican0798-84
Mamo, T., Moseman, E., Ashley, N.K., Morales, C.S., Shi, J., Dkuritzkes, A.R., Robert, L., von Ulrich, A., Farokhzad, O.C.: Emerging nanotechnology approaches for HIV/AIDS treatment and prevention Review. Nanomedicine 5, 269–285 (2010)
da Lindner, R.G., Santos, D.B., Colle, D., Moreira, E.L.G., Prediger, R.D., Farina, M., Khalil, N.M., Mainardes, R.M.: Improved neuroprotective effects of poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine 10, 1127–1138 (2015)
Jayant, R.D.: Nanotechnology for the treatment of NeuroAIDS. J. Nanomedicine Res. 3, 3–5 (2016)
Shah, L.K., Amiji, M.M.: Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 23, 2638–2645 (2006). https://doi.org/10.1007/s11095-006-9101-7
Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S.: Nano based drug delivery systems: recent developments and future prospects 10 technology 1007 nanotechnology 03 chemical sciences 0306 physical chemistry (incl. structural) 03 chemical sciences 0303 macromolecular and materials chemistry 11 medical and he. J. Nanobiotechnology. (2018). https://doi.org/10.1186/s12951-018-0392-8
Destache, C.J., Belgum, T., Christensen, K., Shibata, A., Sharma, A., Dash, A.: Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect. Dis. 9, 1–8 (2009). https://doi.org/10.1186/1471-2334-9-198
Nowacek, A.S., McMillan, J., Miller, R., Anderson, A., Rabinow, B., Gendelman, H.E.: Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: Implications for NeuroAIDS therapeutics. J. Neuroimmune Pharmacol. 5, 592–601 (2010). https://doi.org/10.1007/s11481-010-9198-7
Mcclements, D.J.: Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J. Food Sci. 80, N1602–N1611 (2015). https://doi.org/10.1111/1750-3841.12919
Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K., Morimoto, T.: Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 34, 660–665 (2011). https://doi.org/10.1248/bpb.34.660
Celotti, E., Ferrarini, R., Zironi, R., Conte, L.S.: Resveratrol content of some wines obtained from dried Valpolicella grapes: recioto and amarone. J. Chromatogr. A. 730, 47–52 (1996). https://doi.org/10.1016/0021-9673(95)00962-0
Summerlin, N., Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Popat, A.: Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm. 479, 282–290 (2015). https://doi.org/10.1016/j.ijpharm.2015.01.003
Sanna, V., Siddiqui, I.A., Sechi, M., Mukhtar, H.: Resveratrol-loaded nanoparticles based on poly(epsiloncaprolactone) and poly(D, L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol. Pharm. 10, 3871–3881 (2013). https://doi.org/10.1021/mp400342f
Venuti, V., Cannavà, C., Cristiano, M.C., Fresta, M., Majolino, D., Paolino, D., Stancanelli, R., Tommasini, S., Ventura, C.A.: A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surfaces B Biointerfaces. 115, 22–28 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.025
Sessa, M., Balestrieri, M.L., Ferrari, G., Servillo, L., Castaldo, D., D’Onofrio, N., Donsì, F., Tsao, R.: Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 147, 42–50 (2014). https://doi.org/10.1016/j.foodchem.2013.09.088
Penalva, R., Esparza, I., Larraneta, E., González-Navarro, C.J., Gamazo, C., Irache, J.M.: Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J. Agric. Food Chem. 63, 5603–5611 (2015). https://doi.org/10.1021/jf505694e
Catania, A., Barrajón-Catalán, E., Nicolosi, S., Cicirata, F., Micol, V.: Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells. Breast Cancer Res. Treat. 141, 55–65 (2013). https://doi.org/10.1007/s10549-013-2667-y
Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Parekh, H.S., Popat, A.: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J. Colloid Interface Sci. 462, 368–374 (2016). https://doi.org/10.1016/j.jcis.2015.10.022
Wang, Z., Yu, X., Li, Y. V.: Zinc chelation promotes streptokinase-induced thrombolysis in vitro. Int. J. Physiol. Pathophysiol. Pharmacol. 9, 137–146 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698690.
Vallet-Regí, M., Colilla, M., Izquierdo-Barba, I., Manzano, M.: Mesoporous silica nanoparticles for drug delivery: current insights. Molecules 23, 1–19 (2018). https://doi.org/10.3390/molecules23010047
Florek, J., Caillard, R., Kleitz, F.: Evaluation of mesoporous silica nanoparticles for oral drug delivery: current status and perspective of MSNs drug carriers. Nanoscale 9(40), 15252–15277 (2017)
Buzea, C., Pacheco, I: Toxicity of nanoparticles. Woodhead Publishing, pp 705–754 (2019)
Kipp, J.E.: The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109–122 (2004). https://doi.org/10.1016/j.ijpharm.2004.07.019
Duncan, R.: The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003). https://doi.org/10.1038/nrd1088
Baran, E.T., Özer, N., Hasirci, V.: In vivo half life of nanoencapsulated L-asparaginase. J. Mater. Sci. Mater. Med. 13, 1113–1121 (2002). https://doi.org/10.1023/A:1021125617828
Cascone, M.G., Lazzeri, L., Carmignani, C., Zhu, Z.: Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J. Mater. Sci. Mater. Med. 13, 523–526 (2002). https://doi.org/10.1023/A:1014791327253
Rosenblum, D., Joshi, N., Tao, W., Karp, J.M., Peer, D.: Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018). https://doi.org/10.1038/s41467-018-03705-y
Comments (0)