Noncoding RNAs in Pulmonary Arterial Hypertension

Sommer N. Ghofrani H.A. Pak O. et al.

Current and future treatments of pulmonary arterial hypertension.

Br J Pharmacol. 178: 6-30Vizza C.D. Lang I.M. Badagliacca R. et al.

Aggressive Afterload Lowering to Improve the Right Ventricle: A New Target for Medical Therapy in Pulmonary Arterial Hypertension?.

Am J Respir Crit Care Med. 205: 751-760

Assembly and function of small RNA - argonaute protein complexes.

Biol Chem. 395: 611-629O’Brien J. Hayder H. Zayed Y. et al.

Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation.

Front Endocrinol (Lausanne). 9https://doi.org/10.3389/FENDO.2018.00402Condorelli G. Latronico M.V.G. Cavarretta E.

MicroRNAs in cardiovascular diseases: Current knowledge and the road ahead.

J Am Coll Cardiol. 63: 2177-2187Romaine S.P.R. Tomaszewski M. Condorelli G. et al.

MicroRNAs in cardiovascular disease: an introduction for clinicians.

Heart. 101: 921-928Kabekkodu S.P. Shukla V. Varghese V.K. et al.

Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities.

Wiley Interdiscip Rev RNA. 11: e1563

Noncoding RNAs: Classification, Biology and Functioning.

Adv Exp Med Biol. 937: 3-17

MicroRNAs in development and disease.

Physiol Rev. 91: 827-887

Modulation of miRNAs in Pulmonary Hypertension.

Int J Hypertens. 2015https://doi.org/10.1155/2015/169069Lee A. McLean D. Choi J. et al.

Therapeutic implications of microRNAs in pulmonary arterial hypertension.

BMB Rep. 47: 311-317Neth P. Nazari-Jahantigh M. Schober A. et al.

MicroRNAs in flow-dependent vascular remodelling.

Cardiovasc Res. 99: 294-303Kumar S. Kim C.W. Simmons R.D. et al.

Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis mechanosensitive athero-miRs.

Arterioscler Thromb Vasc Biol. 34: 2206-2216Bienertova-Vasku J. Novak J. Vasku A.

MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment.

J Am Soc Hypertens. 9: 221-234Bi R. Bao C. Jiang L. et al.

MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production.

Biochem Biophys Res Commun. 460: 469-475

Mechanistic insights into the link between a polymorphism of the 3’UTR of the SLC7A1 gene and hypertension.

Hum Mutat. 30: 328-333Yang Z. Venardos K. Jones E. et al.

Identification of a novel polymorphism in the 3’UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction.

Circulation. 115: 1269-1274Sun H.X. Zeng D.Y. Li R.T. et al.

Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase.

Hypertension. 60: 1407-1414Suárez Y. Fernández-Hernando C. Pober J.S. et al.

Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells.

Circ Res. 100: 1164-1173Deng Z. Morse J.H. Slager S.L. et al.

Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene.

Am J Hum Genet. 67: 737-744Pospisil V. Vargova K. Kokavec J. et al.

Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation.

The EMBO J. 30: 4450Brock M. Samillan V.J. Trenkmann M. et al.

AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension.

Eur Heart J. 35: 3203-3211

Pullamsetti SS, Doebele C, Fischer A, et al. Inhibition Of MicroRNA-17 Improves Lung And Heart Function In Experimental Pulmonary Hypertension. 2012:A2617-A2617. doi:10.1164/AJRCCM-CONFERENCE.2012.185.1_MEETINGABSTRACTS.A2617

Bertero T. Lu Y. Annis S. et al.

Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension.

J Clin Invest. 124: 3514-3528Santos-Ferreira C.A. Abreu M.T. Marques C.I. et al.

Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges.

JACC Basic Transl Sci. 5: 1149-1162Ruffenach G. Chabot S. Tanguay V.F. et al.

Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension.

Am J Respir Crit Care Med. 194: 1273-1285Courboulin A. Paulin R. Giguère N.J. et al.

Role for miR-204 in human pulmonary arterial hypertension.

J Exp Med. 208: 535-548Jalali S. Ramanathan G.K. Parthasarathy P.T. et al.

Mir-206 Regulates Pulmonary Artery Smooth Muscle Cell Proliferation and Differentiation.

PLoS ONE. 7https://doi.org/10.1371/JOURNAL.PONE.0046808Yue J. Guan J. Wang X. et al.

MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF-1α/Fhl-1 pathway.

Lab Invest. 93: 748-759Yang S. Banerjee S. de Freitas A. et al.

miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling.

Am J Physiol Lung Cell Mol Physiol. 302: 521-529Davis B.N. Hilyard A.C. Lagna G. et al.

SMAD proteins control DROSHA-mediated microRNA maturation.

Nature. 454: 56-61Parikh V.N. Jin R.C. Rabello S. et al.

MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach.

Circulation. 125: 1520-1532Caruso P. MacLean M.R. Khanin R. et al.

Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline.

Arterioscler Thromb Vasc Biol. 30: 716-723Li S. Ran Y. Zhang D. et al.

MicroRNA-138 plays a role in hypoxic pulmonary vascular remodeling by targeting Mst1.

Biochem J. 452: 281-291

Induction of microRNA-138 by pro-inflammatory cytokines causes endothelial cell dysfunction.

FEBS Lett. 588: 906-914Kim J. Kang Y. Kojima Y. et al.

An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension.

Nat Med. 19: 74-82Hergenreider E. Heydt S. Tréguer K. et al.

Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.

Nat Cell Biol. 14: 249-256Climent M. Quintavalle M. Miragoli M. et al.

TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization.

Circ Res. 116: 1753-1764Cheng Y. Liu X. Yang J. et al.

MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation.

Circ Res. 105: 158-166Caruso P. Dempsie Y. Stevens H.C. et al.

A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples.

Circ Res. 111: 290-300Kang K. Peng X. Zhang X. et al.

MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells.

J Biol Chem. 288: 25414-25427Wang D. Zhang H. Li M. et al.

MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

Circ Res. 114: 67-78Marchese F.P. Raimondi I. Huarte M.

The multidimensional mechanisms of long noncoding RNA function.

Genome Biol. 18Derrien T. Johnson R. Bussotti G. et al.

The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression.

Genome Res. 22: 1775-1789

The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis.

Int J Mol Sci. 22: 1-20

N6-methyl-adenosine modification in messenger and long noncoding RNA.

Trends Biochem Sci. 38: 204-209Geisler S. Lojek L. Khalil A.M. et al.

Decapping of long noncoding RNAs regulates inducible genes.

Mol Cell. 45: 279-291

Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively.

Mol Cell Biol. 17: 6122-6130Chen C. He Y. Feng Y. et al.

Long noncoding RNA review and implications in acute lung inflammation.

Life Sci. 269https://doi.org/10.1016/j.lfs.2021.119044Leisegang M.S. Fork C. Josipovic I. et al.

Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function.

Circulation. 136: 65-79Neumann P. Jaé N. Knau A. et al.

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Nat Commun. 9https://doi.org/10.1038/S41467-017-02431-1Xiang Y. Zhang Y. Tang Y. et al.

MALAT1 Modulates TGF-β1-Induced Endothelial-to-Mesenchymal Transition through Downregulation of miR-145.

Cell Physiol Biochem. 42: 357-372Wang D. Xu H. Wu B. et al.

Long noncoding RNA MALAT1 sponges miR-124-3p.1/KLF5 to promote pulmonary vascular remodeling and cell cycle progression of pulmonary artery hypertension.

Int J Mol Med. 44: 871-884Yang L. Liang H. Shen L. et al.

LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1.

Life Sci. 237https://doi.org/10.1016/J.LFS.2019.116769Hao X. Li H. Zhang P. et al.

Down-regulation of lncRNA Gas5 promotes hypoxia-induced pulmonary arterial smooth muscle cell proliferation by regulating KCNK3 expression.

Eur J Pharmacol. 889https://doi.org/10.1016/J.EJPHAR.2020.173618Lei S. Peng F. Li M.L. et al.

LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension.

Am J Physiol Heart Circ Physiol. 319: H377-H391Liu Y. Hu R. Zhu J. et al.

The lncRNA PAHRF functions as a competing endogenous RNA to regulate MST1 expression by sponging miR-23a-3p in pulmonary arterial hypertension.

Vascul Pharmacol. 139https://doi.org/10.1016/J.VPH.2021.106886Sun Z. Nie X. Sun S. et al.

Long Noncoding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway.

Cell Physiol Biochem. 42: 2569-2581Golpon H.A. Geraci M.W. Moore M.D. et al.

HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.

Am J Pathol. 158: 955-966Li Z.K. Gao L.F. Zhu X.A. et al.

LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis.

Biochem Genet. 59: 1158-1172Zhang H. Liu Y. Yan L. et al.

Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation.

Cardiovasc Res. 115: 647-657Zhang J. Silva T. Yarovinsky T. et al.

VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling.

Circ Res. 107: 408-417Wang S. Cao W. Gao S. et al.

TUG1 Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension.

Can J Cardiol. 35: 1534-1545Wang R. Zhou S. Wu P. et al.

Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in Treating Pulmonary Hypertension with Melatonin.

Mol Ther Nucleic Acids. 13: 44-54

LncRNA-Ang362 Promotes Pulmonary Arterial Hypertension by Regulating miR-221 and miR-222.

Shock. 53: 723-729Chen J. Guo J. Cui X. et al.

The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells.

Am J Respir Cell Mol Biol. 58: 181-193Liu Y. Zhang H. Li Y. et al.

Long Noncoding RNA Rps4l Mediates the Proliferation of Hypoxic Pulmonary Artery Smooth Muscle Cells.

Hypertension. 76: 1124-1133Li Y. Zhang J. Sun H. et al.

lnc-Rps4l-encoded peptide RPS4XL regulates RPS6 phosphorylation and inhibits the proliferation of PASMCs caused by hypoxia.

Mol Ther. 29: 1411-1424Sun Z. Liu Y. Yu F. et al.

Long noncoding RNA and mRNA profile analysis of metformin to reverse the pulmonary hypertension vascular remodeling induced by monocrotaline.

Biomed Pharmacother. 115https://doi.org/10.1016/J.BIOPHA.2019.108933Sun Z. Liu Y. Hu R. et al.

Metformin inhibits pulmonary artery smooth muscle cell proliferation by upregulating p21 via NONRATT015587.2.

Int J Mol Med. 49https://doi.org/10.3892/IJMM.2022.5104Zehendner C.M. Valasarajan C. Werner A. et al.

Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ.

Am J Respir Crit Care Med. 202: 1445-1457Jandl K. Thekkekara Puthenparampil H. Marsh L.M. et al.

Long noncoding RNAs influence the transcriptome in pulmonary arterial hypertension: the role of PAXIP1-AS1.

J Pathol. 247: 357-370Song R. Lei S. Yang S. et al.

LncRNA PAXIP1-AS1 fosters the pathogenesis of pulmonary arterial hypertension via ETS1/WIPF1/RhoA axis.

J Cell Mol Med. 25: 7321-7334Liu Y. Sun Z. Zhu J. et al.

LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism.

J Cell Physiol. 233: 4801-4814Xing Y. Zheng X. Fu Y. et al.

Long Noncoding RNA-Maternally Expressed Gene 3 Contributes to Hypoxic Pulmonary Hypertension.

Mol Ther. 27https://doi.org/10.1016/J.YMTHE.2019.07.022Zhu B. Gong Y. Yan G. et al.

Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21.

Biochem Biophys Res Commun. 495: 2125-2132Gong J. Chen Z. Chen Y. et al.

Long noncoding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension.

Respir Res. 20https://doi.org/10.1186/S12931-019-1018-XWang S. Zhang C. Zhang X.

Downregulation of long noncoding RNA ANRIL promotes proliferation and migration in hypoxic human pulmonary artery smooth muscle cells.

Mol Med Rep. 21: 589-596

LincRNA-Cox2 promotes pulmonary arterial hypertension by regulating the let-7a-mediated STAT3 signaling pathway.

Mol Cell Biochem. 475: 239-247Wei C. Henderson H. Spradley C. et al.

Circulating miRNAs as potential marker for pulmonary hypertension.

PLoS One. 8https://doi.org/10.1371/JOURNAL.PONE.0064396Chouvarine P. Geldner J. Giagnorio R. et al.

Trans-Right-Ventricle and Transpulmonary MicroRNA Gradients in Human Pulmonary Arterial Hypertension.

Pediatr Crit Care Med. 21: 340-349Omura J. Habbout K. Shimauchi T. et al.

Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension.

Circulation. 142: 1464-1484Schlosser K. Hanson J. Villeneuve P.J. et al.

Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers.

Sci Rep. 6https://doi.org/10.1038/SREP36596Zhu T.T. Sun R.L. Yin Y.L. et al.

Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells.

Pflugers Archiv Eur J Physiol. 471: 347-355Su H. Xu X. Yan C. et al.

LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension.

Respir Res. 19: 1-18

Comments (0)

No login
gif