Titania nanotube arrays as nanobiomatrix interfaces for localized biomolecules delivery to human neuroblastoma SH-SY5Y cells

Aw, M.S., Gulati, K., Losic, D.: Controlling drug release from titania nanotube arrays using polymer nanocarriers and biopolymer coating. J. Biomater. Nanobiotechnol. 2(05), 477–484 (2011). https://doi.org/10.4236/jbnb.2011.225058

Article  CAS  Google Scholar 

Losic, D., Velleman, L., Kant, K., Kumeria, T., Gulati, K., Shapter, J.G., et al.: Self-ordering electrochemistry: a simple approach for engineering nanopore and nanotube arrays for emerging applications. Aust. J. Chem 64(3), 294–301 (2011). https://doi.org/10.1071/CH10398

Article  CAS  Google Scholar 

Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17(15), 1451 (2007). https://doi.org/10.1039/B701168G

Article  CAS  Google Scholar 

Popat, K.C., Leoni, L., Grimes, C.A., Desai, T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21), 3188–3197 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.020

Article  CAS  Google Scholar 

Carballo-Vila, M., Moreno-Burriel, B., Chinarro, E., Jurado, J.R., Casañ-Pastor, N., Collazos-Castro, J.E.: Titanium oxide as substrate for neural cell growth. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. 90(1), 94–105 (2009). https://doi.org/10.1002/jbm.a.32058

Article  CAS  Google Scholar 

Liu, X., Chu, P., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 47(3–4), 49–121 (2004). https://doi.org/10.1016/j.mser.2004.11.001

Article  CAS  Google Scholar 

Sinná Aw, M.: A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 48(27), 3348–3350 (2012). https://doi.org/10.1039/c2cc17690d

Article  CAS  Google Scholar 

Macleod, M.R., Allsopp, T.E., McLuckie, J., Kelly, J.S.: Serum withdrawal causes apoptosis in SHSY 5Y cells. Brain Res. 889(1–2), 308–315 (2001). https://doi.org/10.1016/s0006-8993(00)03173-5

Article  CAS  Google Scholar 

Kirsch, M., Rach, J., Handke, W., Seltsam, A., Pepelanova, I., Strauß, S., Vogt, P., Scheper, T., Lavrentieva, A.: Comparative analysis of mesenchymal stem cell cultivation in fetal calf serum, human serum, and platelet lysate in 2D and 3D systems. Front. Bioeng. Biotechnol. 8, 598389 (2021)

Article  Google Scholar 

Verma, A., Verma, M., Singh, A.: Animal tissue culture principles and applications. In: Animal Biotechnology, pp. 269–293. Academic Press, New York (2020)

Chapter  Google Scholar 

Effendy, W.N.F.W.E., Mydin, R.B.S.M.N., Sreekantan, S., Gazzali, A.M., Musa, M.Y.: Cisplatin encapsulation efficiency profiles using titania nanotube arrays platform in targeted cancer therapy. Biointerface Res. Appl. Chem. 13(3), 255–266 (2023)

CAS  Google Scholar 

Wu, S., Zhang, D., Bai, J., Zheng, H., Deng, J., Gu, Z., Gao, C.: Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells. J. Biomed. Mater. Res. A. 108(11), 2305–2318 (2020)

Article  CAS  Google Scholar 

Gulati, K., Ramakrishnan, S., Aw, M.S., Atkins, G.J., Findlay, D.M., Losic, D.: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8(1), 449–456 (2012). https://doi.org/10.1016/j.actbio.2011.09.004

Article  CAS  Google Scholar 

Shi, J., Feng, B., Lu, X., Weng, J.: Adsorption of bovine serum albumin onto titanium dioxide nanotube arrays. Int. J. Mater. Res. 103(7), 889–896 (2012). https://doi.org/10.3139/146.110696

Article  CAS  Google Scholar 

Jia, H., Lei, L.K.: Kinetics of drug release from drug carrier of polymer/TiO2nanotubes composite-pH dependent study. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.41570

Article  Google Scholar 

Modi, S., Anderson, B.D.: Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10(8), 3076–3089 (2013). https://doi.org/10.1021/mp400154a

Article  CAS  Google Scholar 

Yang, W., Xi, X., Shen, X., Liu, P., Hu, Y., Cai, K.: Titania nanotubes dimensions dependent protein adsorption and its effect on the growth of osteoblasts. J. Biomed. Res. A. 102(10), 3598–3608 (2014). https://doi.org/10.1002/jbm.a.35021

Article  CAS  Google Scholar 

Wang, L., Friesner, R.A., Berne, B.J.: Competition of electrostatic and hydrophobic interactions between small hydrophobes and model enclosures. J. Phys. Chem. B 114(21), 7294–7301 (2010). https://doi.org/10.1021/jp100772w

Article  CAS  Google Scholar 

Lu, R., Wang, C., Wang, X., Wang, Y., Wang, N., Chou, J., Li, T., Zhang, Z., Ling, Y., Chen, S.: Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells. Int. J. Nanomed. 13, 2037 (2018). https://doi.org/10.2147/IJN.S155532

Article  CAS  Google Scholar 

Wang, Z., Wang, X., Zhang, J., Yu, X., Wu, Z.: Influence of surface functional groups on deposition and release of TiO2 nanoparticles. Environ. Sci. Technol. 51(13), 7467–7475 (2017). https://doi.org/10.1021/acs.est.7b00956

Article  CAS  Google Scholar 

Katas, H., Hussain, Z., Awang, S.A.: Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. J. Nanomater. 2013, 1–10 (2013). https://doi.org/10.1155/2013/536291

Article  CAS  Google Scholar 

Ashraf, M.A., Batool, S., Ahmad, M., Sarfraz, M., Noor, W.S.A.W.M.: Biopolymers as biofilters and biobarriers. In: Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, pp. 387–420. Woodhead Publishing, Sawston (2016) . (eBook ISBN: 9780081002094)

Chapter  Google Scholar 

Wang, Q.Z., Chen, X.G., Liu, N., Wang, S.X., Liu, C.S., Meng, X.H., Liu, C.G.: Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr. Polym. 65(2), 194–201 (2006). https://doi.org/10.1016/j.carbpol.2006.01.001

Article  CAS  Google Scholar 

Philippova, O.E., Korchagina, E.V.: Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym. Sci. Ser. A 54(7), 552–572 (2012). https://doi.org/10.1134/S0965545X12060107

Article  CAS  Google Scholar 

Inamdar, N., Mourya, V.K.: Chitosan and Anionic Polymers—Complex Formation and Applications. Polysaccharides: Development, Properties and Applications, pp. 333–377. Nova Science Publishers, Hauppauge (2011)

Google Scholar 

Hou, C., Wang, Y., Zhu, H., Wei, H.: Construction of enzyme immobilization system through metal-polyphenol assisted Fe3O4/chitosan hybrid microcapsules. Chem. Eng. J. 283, 397–403 (2016). https://doi.org/10.1016/j.cej.2015.07.067

Article  CAS  Google Scholar 

Bano, I., Arshad, M., Yasin, T., Ghauri, M.A., Younus, M.: Chitosan: a potential biopolymer for wound management. Int. J. Biol. Macromol. 102, 380–383 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.047

Article  CAS  Google Scholar 

Wu, S., Dong, H., Li, Q., Wang, G., Cao, X.: High strength, biocompatible hydrogels with designable shapes and special hollow-formed character using chitosan and gelatin. Carbohyd. Polym. 168, 147–152 (2017). https://doi.org/10.1016/j.carbpol.2017.03.069

Article  CAS  Google Scholar 

Chen, J., Li, M., Yang, C., Yin, X., Duan, K., Wang, J., Feng, B.: Macrophage phenotype switch by sequential action of immunomodulatory cytokines from hydrogel layers on titania nanotubes. Colloids Surf. B 163, 336–345 (2018). https://doi.org/10.1016/j.colsurfb.2018.01.007

Article  CAS  Google Scholar 

Fonseca-Santos, B., Chorilli, M.: An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mat. Sci. Eng. C 77, 1349–1362 (2017). https://doi.org/10.1016/j.msec.2017.03.198

Article  CAS  Google Scholar 

Thomas, M.G., Marwood, R.M., Parsons, A.E., Parsons, R.B.: The effect of foetal bovine serum supplementation upon the lactate dehydrogenase cytotoxicity assay: important considerations for in vitro toxicity analysis. Toxicol In Vitro 30(1), 300–308 (2015). https://doi.org/10.1016/j.tiv.2015.10.00719

Article  CAS  Google Scholar 

Vitaglione, P., Sforza, S., Galaverna, G., Ghidini, C., Caporaso, N., Vescovi Pier, P., Fogliano, V., Marchelli, R.: Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res. 49(5), 495–504 (2005). https://doi.org/10.1002/mnfr.200500002

Article  CAS  Google Scholar 

Zhang, Y., Zhang, L., Li, B., Han, Y.: Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. ACS Appl. Mater. Interfaces. 9(11), 9449–9461 (2017). https://doi.org/10.1021/acsami.7b00322

Article  CAS  Google Scholar 

Gervois, P., Wolfs, E., Hilkens, P., Ratajczak, J., Driesen, R.B., Vangansewinkel, T., Bronckaers, A., Brône, B., Struys, T., Lambrichts, I.: Paracrine maturation and migration of SH-SY5Y cells by dental pulp stem cells. J Dent Res. 96(6), 654–662 (2017). https://doi.org/10.1177/0022034517690491

Article  CAS  Google Scholar 

Brunner, D., Frank, J., Appl, H., Schöffl, H., Pfaller, W., Gstraunthaler, G.: The serum-free media interactive online database. ALTEX-Alternatives to Animal Experimentation 27(1), 53–62 (2010). https://doi.org/10.14573/altex.2010.1.53

Article  Google Scholar 

Hu, N., Wu, Y., Xie, L., Yusuf, S.M., Gao, N., Starink, M.J., Tong, L., Chu, P.K., Wang, H.: Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms. Acta Biomater. 106, 360–375 (2020). https://doi.org/10.1016/j.actbio.2020.02.009

Article  CAS  Google Scholar 

Lehrich, B.M., Liang, Y., Khosravi, P., Federoff, H.J., Fiandaca, M.S.: Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. Inter J Mol Sci 19(11), 3538 (2018). https://doi.org/10.3390/ijms19113538

Article  Google Scholar 

Rameshrad, M., Imenshahidi, M., Razavi, B.M., Iranshahi, M., Hosseinzadeh, H.: Bisphenol A vascular toxicity: protective effect of Vitis vinifera (grape) seed extract and resveratrol. Phytother. Res. 32(12), 2396–2407 (2018). https://doi.org/10.1002/ptr.6175

Article  CAS  Google Scholar 

Comments (0)

No login
gif