Aw, M.S., Gulati, K., Losic, D.: Controlling drug release from titania nanotube arrays using polymer nanocarriers and biopolymer coating. J. Biomater. Nanobiotechnol. 2(05), 477–484 (2011). https://doi.org/10.4236/jbnb.2011.225058
Losic, D., Velleman, L., Kant, K., Kumeria, T., Gulati, K., Shapter, J.G., et al.: Self-ordering electrochemistry: a simple approach for engineering nanopore and nanotube arrays for emerging applications. Aust. J. Chem 64(3), 294–301 (2011). https://doi.org/10.1071/CH10398
Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17(15), 1451 (2007). https://doi.org/10.1039/B701168G
Popat, K.C., Leoni, L., Grimes, C.A., Desai, T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21), 3188–3197 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.020
Carballo-Vila, M., Moreno-Burriel, B., Chinarro, E., Jurado, J.R., Casañ-Pastor, N., Collazos-Castro, J.E.: Titanium oxide as substrate for neural cell growth. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. 90(1), 94–105 (2009). https://doi.org/10.1002/jbm.a.32058
Liu, X., Chu, P., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. 47(3–4), 49–121 (2004). https://doi.org/10.1016/j.mser.2004.11.001
Sinná Aw, M.: A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 48(27), 3348–3350 (2012). https://doi.org/10.1039/c2cc17690d
Macleod, M.R., Allsopp, T.E., McLuckie, J., Kelly, J.S.: Serum withdrawal causes apoptosis in SHSY 5Y cells. Brain Res. 889(1–2), 308–315 (2001). https://doi.org/10.1016/s0006-8993(00)03173-5
Kirsch, M., Rach, J., Handke, W., Seltsam, A., Pepelanova, I., Strauß, S., Vogt, P., Scheper, T., Lavrentieva, A.: Comparative analysis of mesenchymal stem cell cultivation in fetal calf serum, human serum, and platelet lysate in 2D and 3D systems. Front. Bioeng. Biotechnol. 8, 598389 (2021)
Verma, A., Verma, M., Singh, A.: Animal tissue culture principles and applications. In: Animal Biotechnology, pp. 269–293. Academic Press, New York (2020)
Effendy, W.N.F.W.E., Mydin, R.B.S.M.N., Sreekantan, S., Gazzali, A.M., Musa, M.Y.: Cisplatin encapsulation efficiency profiles using titania nanotube arrays platform in targeted cancer therapy. Biointerface Res. Appl. Chem. 13(3), 255–266 (2023)
Wu, S., Zhang, D., Bai, J., Zheng, H., Deng, J., Gu, Z., Gao, C.: Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells. J. Biomed. Mater. Res. A. 108(11), 2305–2318 (2020)
Gulati, K., Ramakrishnan, S., Aw, M.S., Atkins, G.J., Findlay, D.M., Losic, D.: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8(1), 449–456 (2012). https://doi.org/10.1016/j.actbio.2011.09.004
Shi, J., Feng, B., Lu, X., Weng, J.: Adsorption of bovine serum albumin onto titanium dioxide nanotube arrays. Int. J. Mater. Res. 103(7), 889–896 (2012). https://doi.org/10.3139/146.110696
Jia, H., Lei, L.K.: Kinetics of drug release from drug carrier of polymer/TiO2nanotubes composite-pH dependent study. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.41570
Modi, S., Anderson, B.D.: Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10(8), 3076–3089 (2013). https://doi.org/10.1021/mp400154a
Yang, W., Xi, X., Shen, X., Liu, P., Hu, Y., Cai, K.: Titania nanotubes dimensions dependent protein adsorption and its effect on the growth of osteoblasts. J. Biomed. Res. A. 102(10), 3598–3608 (2014). https://doi.org/10.1002/jbm.a.35021
Wang, L., Friesner, R.A., Berne, B.J.: Competition of electrostatic and hydrophobic interactions between small hydrophobes and model enclosures. J. Phys. Chem. B 114(21), 7294–7301 (2010). https://doi.org/10.1021/jp100772w
Lu, R., Wang, C., Wang, X., Wang, Y., Wang, N., Chou, J., Li, T., Zhang, Z., Ling, Y., Chen, S.: Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells. Int. J. Nanomed. 13, 2037 (2018). https://doi.org/10.2147/IJN.S155532
Wang, Z., Wang, X., Zhang, J., Yu, X., Wu, Z.: Influence of surface functional groups on deposition and release of TiO2 nanoparticles. Environ. Sci. Technol. 51(13), 7467–7475 (2017). https://doi.org/10.1021/acs.est.7b00956
Katas, H., Hussain, Z., Awang, S.A.: Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. J. Nanomater. 2013, 1–10 (2013). https://doi.org/10.1155/2013/536291
Ashraf, M.A., Batool, S., Ahmad, M., Sarfraz, M., Noor, W.S.A.W.M.: Biopolymers as biofilters and biobarriers. In: Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials, pp. 387–420. Woodhead Publishing, Sawston (2016) . (eBook ISBN: 9780081002094)
Wang, Q.Z., Chen, X.G., Liu, N., Wang, S.X., Liu, C.S., Meng, X.H., Liu, C.G.: Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydr. Polym. 65(2), 194–201 (2006). https://doi.org/10.1016/j.carbpol.2006.01.001
Philippova, O.E., Korchagina, E.V.: Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym. Sci. Ser. A 54(7), 552–572 (2012). https://doi.org/10.1134/S0965545X12060107
Inamdar, N., Mourya, V.K.: Chitosan and Anionic Polymers—Complex Formation and Applications. Polysaccharides: Development, Properties and Applications, pp. 333–377. Nova Science Publishers, Hauppauge (2011)
Hou, C., Wang, Y., Zhu, H., Wei, H.: Construction of enzyme immobilization system through metal-polyphenol assisted Fe3O4/chitosan hybrid microcapsules. Chem. Eng. J. 283, 397–403 (2016). https://doi.org/10.1016/j.cej.2015.07.067
Bano, I., Arshad, M., Yasin, T., Ghauri, M.A., Younus, M.: Chitosan: a potential biopolymer for wound management. Int. J. Biol. Macromol. 102, 380–383 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.047
Wu, S., Dong, H., Li, Q., Wang, G., Cao, X.: High strength, biocompatible hydrogels with designable shapes and special hollow-formed character using chitosan and gelatin. Carbohyd. Polym. 168, 147–152 (2017). https://doi.org/10.1016/j.carbpol.2017.03.069
Chen, J., Li, M., Yang, C., Yin, X., Duan, K., Wang, J., Feng, B.: Macrophage phenotype switch by sequential action of immunomodulatory cytokines from hydrogel layers on titania nanotubes. Colloids Surf. B 163, 336–345 (2018). https://doi.org/10.1016/j.colsurfb.2018.01.007
Fonseca-Santos, B., Chorilli, M.: An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mat. Sci. Eng. C 77, 1349–1362 (2017). https://doi.org/10.1016/j.msec.2017.03.198
Thomas, M.G., Marwood, R.M., Parsons, A.E., Parsons, R.B.: The effect of foetal bovine serum supplementation upon the lactate dehydrogenase cytotoxicity assay: important considerations for in vitro toxicity analysis. Toxicol In Vitro 30(1), 300–308 (2015). https://doi.org/10.1016/j.tiv.2015.10.00719
Vitaglione, P., Sforza, S., Galaverna, G., Ghidini, C., Caporaso, N., Vescovi Pier, P., Fogliano, V., Marchelli, R.: Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res. 49(5), 495–504 (2005). https://doi.org/10.1002/mnfr.200500002
Zhang, Y., Zhang, L., Li, B., Han, Y.: Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO2 nanotubes for long-lasting antibacterial activity and cytocompatibility. ACS Appl. Mater. Interfaces. 9(11), 9449–9461 (2017). https://doi.org/10.1021/acsami.7b00322
Gervois, P., Wolfs, E., Hilkens, P., Ratajczak, J., Driesen, R.B., Vangansewinkel, T., Bronckaers, A., Brône, B., Struys, T., Lambrichts, I.: Paracrine maturation and migration of SH-SY5Y cells by dental pulp stem cells. J Dent Res. 96(6), 654–662 (2017). https://doi.org/10.1177/0022034517690491
Brunner, D., Frank, J., Appl, H., Schöffl, H., Pfaller, W., Gstraunthaler, G.: The serum-free media interactive online database. ALTEX-Alternatives to Animal Experimentation 27(1), 53–62 (2010). https://doi.org/10.14573/altex.2010.1.53
Hu, N., Wu, Y., Xie, L., Yusuf, S.M., Gao, N., Starink, M.J., Tong, L., Chu, P.K., Wang, H.: Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms. Acta Biomater. 106, 360–375 (2020). https://doi.org/10.1016/j.actbio.2020.02.009
Lehrich, B.M., Liang, Y., Khosravi, P., Federoff, H.J., Fiandaca, M.S.: Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. Inter J Mol Sci 19(11), 3538 (2018). https://doi.org/10.3390/ijms19113538
Rameshrad, M., Imenshahidi, M., Razavi, B.M., Iranshahi, M., Hosseinzadeh, H.: Bisphenol A vascular toxicity: protective effect of Vitis vinifera (grape) seed extract and resveratrol. Phytother. Res. 32(12), 2396–2407 (2018). https://doi.org/10.1002/ptr.6175
Comments (0)