Impact of Age, Sex, and Genetic Diversity in Murine Models of the Hematopoietic Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE)

Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354(19):2034–45. https://doi.org/10.1056/NEJMra052706.

CAS  Article  PubMed  Google Scholar 

Christensen DM, Iddins CJ, Sugarman SL. Ionizing radiation injuries and illnesses. Emerg Med Clin North Am. 2014;32(1):245–65. https://doi.org/10.1016/j.emc.2013.10.002.

Article  PubMed  Google Scholar 

Bergonie J, Tribondeau L. Interpretation of some results of radiotherapy and an attempt at determining a logical technique of treatment. Radiat Res. 1959;11:587–8.

CAS  PubMed  Article  Google Scholar 

Coleman CN, Blakely WF, Fike JR, MacVittie TJ, Metting NF, Mitchell JB, et al. Molecular and cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17–18, 2001. Radiat Res. 2003;159(6):812–34.

CAS  PubMed  Article  Google Scholar 

Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese AM. The hematologist and radiation casualties. Hematology (Am Soc Hematol Educ Prog). 2003:473–96.

Lopez M, Martin M. Medical management of the acute radiation syndrome. Rep Pract Oncol Radiother. 2011;16(4):138–46. https://doi.org/10.1016/j.rpor.2011.05.001.

Article  PubMed  PubMed Central  Google Scholar 

CDC: Acute radiation syndrome: a fact sheet for clinicians. https://www.cdc.gov/nceh/radiation/emergencies/arsphysicianfactsheet.htm#1. Accessed 25 Jun 2022.

Vriesendorp H, Van Bekkum D. Susceptibility to total-body irradiation. In: Broerse J, MacVittie T, editors. Response of Different Species to Total Body Irradiaton. Amsterdam: Martinus Nijhoff; 1984.

Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol. 2002;30:513.

CAS  PubMed  Article  Google Scholar 

Anno GH, Young RW, Bloom RM, Mercier JR. Dose response relationships for acute ionizing-radiation lethality. Health Phys. 2003;84(5):565–75.

CAS  PubMed  Article  Google Scholar 

Barabanova AV, Bushmanov AJ, Kotenko KV. Acute radiation sickness from Chernobyl. Elsevier: Reference Module in Earth Systems and Environmental Sciences; 2019.

Book  Google Scholar 

DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK, Case CM Jr. Use of growth factors and other cytokines for treatment of injuries during a radiation public health emergency. Radiat Res. 2019;192(1):99–120. https://doi.org/10.1667/RR15363.1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

DiCarlo AL, Homer MJ, Coleman CN. United States medical preparedness for nuclear and radiological emergencies. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/ac0d3f.

Article  PubMed  PubMed Central  Google Scholar 

Crawford L. New drug and biological drug products; Evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. In: Food and Drug Administration UDoHaHS, editor. 105 ed: Federal Register; 2002. p. 37988–98.

FDA-CDER. Product development under the animal rule: guidance for industry. Silver Spring, MD: FDA; 2015.

Google Scholar 

Milsap RL, Jusko WJ. Pharmacokinetics in the infant. Environ Health Perspect. 1994;102(Suppl 11):107–10.

PubMed  PubMed Central  Article  Google Scholar 

Grahn D, Hamilton KF. Genetic variation in the acute lethal response of four inbred mouse strains to whole body X-irradiation. Genetics. 1957;42(3):189–98. https://doi.org/10.1093/genetics/42.3.189.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grahn D. Acute radiation response of mice from a cross between radiosensitive and radioresistant strains. Genetics. 1958;43(5):835–43. https://doi.org/10.1093/genetics/43.5.835.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Casarett A. Radiation biology. Englewood, New Jersey: Prentice-Hall Inc.; 1968.

Google Scholar 

Yuhas JM, Yurconic M, Kligerman MM, West G, Peterson DF. Combined use of radioprotective and radiosensitizing drugs in experimental radiotherapy. Radiat Res. 1977;70(2):433–43.

CAS  PubMed  Article  Google Scholar 

Spalding J, Johnson O, Archuleta R. Acute radio-sensitivity as a function of age in mice. Nature. 1965;208(5013):905–6.

CAS  PubMed  Article  Google Scholar 

Langendorff H, Langendorff M. Studies on biological radiation protection. 68. Radiation sensitivity and protective effect of serotonin on mice of various ages. Strahlentherapie. 1966;129(3):425–31.

CAS  PubMed  Google Scholar 

Kohn HI, Kallman RF. Age, growth, and the LD50 of x-rays. Science. 1956;124(3231):1078-.

PubMed  Article  Google Scholar 

Rauchwerger JM. Radiation protection by tibia-shielding in adult, weanling and suckling mice Comparative protection studies. Int J Radiat Biol. 1972;22(3):269–78.

CAS  Google Scholar 

Crosfill ML, Lindop PJ, Rotblat J. Variation of sensitivity to ionizing radiation with age. Nature. 1959;183(4677):1729–30.

CAS  PubMed  Article  Google Scholar 

Lindop PJ, Rotblat J. The age factor in the susceptibility of man and animals to radiation. I. The age factor in radiation sensitivity in mice. Br J Radiol. 1962;35:23–31.

CAS  PubMed  Article  Google Scholar 

Fred SS, Wilson SM, Smith WW. Role of intestinal injury in 30-day radiation lethality of weanling mice. Monogr Nucl Med Biol. 1968;1:413–20.

Google Scholar 

Adams TG, Sumner LE, Casagrande R. Estimating risk of hematopoietic acute radiation syndrome in children. Health Phys. 2017;113(6):452–7. https://doi.org/10.1097/hp.0000000000000720.

CAS  Article  PubMed  Google Scholar 

Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Investig. 2006;116(10):2808–16. https://doi.org/10.1172/JCI28310.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ito T, Tajima F, Ogawa M. Developmental changes of CD34 expression by murine hematopoietic stem cells. Exp Hematol. 2000;28(11):1269–73.

CAS  PubMed  Article  Google Scholar 

Ginsberg G, Hattis D, Sonawane B, Russ A, Banati P, Kozlak M, et al. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci Off J Soc Toxicol. 2002;66(2):185–200.

CAS  Article  Google Scholar 

Hattis D, Ginsberg G, Sonawane B, Smolenski S, Russ A, Kozlak M, et al. Differences in pharmacokinetics between children and adults–II. Children’s variability in drug elimination half-lives and in some parameters needed for physiologically-based pharmacokinetic modeling. Risk Anal. 2003;23(1):117–42.

PubMed  Article  Google Scholar 

Faustman EM, Silbernagel SM, Fenske RA, Burbacher TM, Ponce RA. Mechanisms underlying children’s susceptibility to environmental toxicants. Environ Health Perspect. 2000;108(Suppl 1):13–21.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet. 2000;355(9218):1875–81. https://doi.org/10.1016/S0140-6736(00)02293-5.

CAS  Article  PubMed  Google Scholar 

Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Investig. 2005;115(4):930–9. https://doi.org/10.1172/JCI22492.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79(2):83–9. https://doi.org/10.1111/j.1399-0039.2011.01820.x.

CAS  Article  PubMed  Google Scholar 

Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–9. https://doi.org/10.1038/nature05862.

CAS  Article  PubMed  Google Scholar 

Rube CE, Fricke A, Widmann TA, Furst T, Madry H, Pfreundschuh M, et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE. 2011;6(3): e17487. https://doi.org/10.1371/journal.pone.0017487.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 2014;15(1):37–50. https://doi.org/10.1016/j.stem.2014.04.016.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Moehrle BM, Nattamai K, Brown A, Florian MC, Ryan M, Vogel M, et al. Stem cell-specific mechanisms ensure genomic fidelity within HSCs and upon aging of HSCs. Cell Rep. 2015;13(11):2412–24. https://doi.org/10.1016/j.celrep.2015.11.030.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102(26):9194–9. https://doi.org/10.1073/pnas.0503280102.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim MJ, Kim MH, Kim SA, Chang JS. Age-related deterioration of hematopoietic stem cells. Int J Stem Cells. 2008;1(1):55–63. https://doi.org/10.15283/ijsc.2008.1.1.55.

CAS  Article  PubMed 

Comments (0)

No login
gif