Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354(19):2034–45. https://doi.org/10.1056/NEJMra052706.
CAS Article PubMed Google Scholar
Christensen DM, Iddins CJ, Sugarman SL. Ionizing radiation injuries and illnesses. Emerg Med Clin North Am. 2014;32(1):245–65. https://doi.org/10.1016/j.emc.2013.10.002.
Bergonie J, Tribondeau L. Interpretation of some results of radiotherapy and an attempt at determining a logical technique of treatment. Radiat Res. 1959;11:587–8.
CAS PubMed Article Google Scholar
Coleman CN, Blakely WF, Fike JR, MacVittie TJ, Metting NF, Mitchell JB, et al. Molecular and cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17–18, 2001. Radiat Res. 2003;159(6):812–34.
CAS PubMed Article Google Scholar
Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese AM. The hematologist and radiation casualties. Hematology (Am Soc Hematol Educ Prog). 2003:473–96.
Lopez M, Martin M. Medical management of the acute radiation syndrome. Rep Pract Oncol Radiother. 2011;16(4):138–46. https://doi.org/10.1016/j.rpor.2011.05.001.
Article PubMed PubMed Central Google Scholar
CDC: Acute radiation syndrome: a fact sheet for clinicians. https://www.cdc.gov/nceh/radiation/emergencies/arsphysicianfactsheet.htm#1. Accessed 25 Jun 2022.
Vriesendorp H, Van Bekkum D. Susceptibility to total-body irradiation. In: Broerse J, MacVittie T, editors. Response of Different Species to Total Body Irradiaton. Amsterdam: Martinus Nijhoff; 1984.
Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol. 2002;30:513.
CAS PubMed Article Google Scholar
Anno GH, Young RW, Bloom RM, Mercier JR. Dose response relationships for acute ionizing-radiation lethality. Health Phys. 2003;84(5):565–75.
CAS PubMed Article Google Scholar
Barabanova AV, Bushmanov AJ, Kotenko KV. Acute radiation sickness from Chernobyl. Elsevier: Reference Module in Earth Systems and Environmental Sciences; 2019.
DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK, Case CM Jr. Use of growth factors and other cytokines for treatment of injuries during a radiation public health emergency. Radiat Res. 2019;192(1):99–120. https://doi.org/10.1667/RR15363.1.
CAS Article PubMed PubMed Central Google Scholar
DiCarlo AL, Homer MJ, Coleman CN. United States medical preparedness for nuclear and radiological emergencies. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/ac0d3f.
Article PubMed PubMed Central Google Scholar
Crawford L. New drug and biological drug products; Evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. In: Food and Drug Administration UDoHaHS, editor. 105 ed: Federal Register; 2002. p. 37988–98.
FDA-CDER. Product development under the animal rule: guidance for industry. Silver Spring, MD: FDA; 2015.
Milsap RL, Jusko WJ. Pharmacokinetics in the infant. Environ Health Perspect. 1994;102(Suppl 11):107–10.
PubMed PubMed Central Article Google Scholar
Grahn D, Hamilton KF. Genetic variation in the acute lethal response of four inbred mouse strains to whole body X-irradiation. Genetics. 1957;42(3):189–98. https://doi.org/10.1093/genetics/42.3.189.
CAS Article PubMed PubMed Central Google Scholar
Grahn D. Acute radiation response of mice from a cross between radiosensitive and radioresistant strains. Genetics. 1958;43(5):835–43. https://doi.org/10.1093/genetics/43.5.835.
CAS Article PubMed PubMed Central Google Scholar
Casarett A. Radiation biology. Englewood, New Jersey: Prentice-Hall Inc.; 1968.
Yuhas JM, Yurconic M, Kligerman MM, West G, Peterson DF. Combined use of radioprotective and radiosensitizing drugs in experimental radiotherapy. Radiat Res. 1977;70(2):433–43.
CAS PubMed Article Google Scholar
Spalding J, Johnson O, Archuleta R. Acute radio-sensitivity as a function of age in mice. Nature. 1965;208(5013):905–6.
CAS PubMed Article Google Scholar
Langendorff H, Langendorff M. Studies on biological radiation protection. 68. Radiation sensitivity and protective effect of serotonin on mice of various ages. Strahlentherapie. 1966;129(3):425–31.
Kohn HI, Kallman RF. Age, growth, and the LD50 of x-rays. Science. 1956;124(3231):1078-.
Rauchwerger JM. Radiation protection by tibia-shielding in adult, weanling and suckling mice Comparative protection studies. Int J Radiat Biol. 1972;22(3):269–78.
Crosfill ML, Lindop PJ, Rotblat J. Variation of sensitivity to ionizing radiation with age. Nature. 1959;183(4677):1729–30.
CAS PubMed Article Google Scholar
Lindop PJ, Rotblat J. The age factor in the susceptibility of man and animals to radiation. I. The age factor in radiation sensitivity in mice. Br J Radiol. 1962;35:23–31.
CAS PubMed Article Google Scholar
Fred SS, Wilson SM, Smith WW. Role of intestinal injury in 30-day radiation lethality of weanling mice. Monogr Nucl Med Biol. 1968;1:413–20.
Adams TG, Sumner LE, Casagrande R. Estimating risk of hematopoietic acute radiation syndrome in children. Health Phys. 2017;113(6):452–7. https://doi.org/10.1097/hp.0000000000000720.
CAS Article PubMed Google Scholar
Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Investig. 2006;116(10):2808–16. https://doi.org/10.1172/JCI28310.
CAS Article PubMed PubMed Central Google Scholar
Ito T, Tajima F, Ogawa M. Developmental changes of CD34 expression by murine hematopoietic stem cells. Exp Hematol. 2000;28(11):1269–73.
CAS PubMed Article Google Scholar
Ginsberg G, Hattis D, Sonawane B, Russ A, Banati P, Kozlak M, et al. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci Off J Soc Toxicol. 2002;66(2):185–200.
Hattis D, Ginsberg G, Sonawane B, Smolenski S, Russ A, Kozlak M, et al. Differences in pharmacokinetics between children and adults–II. Children’s variability in drug elimination half-lives and in some parameters needed for physiologically-based pharmacokinetic modeling. Risk Anal. 2003;23(1):117–42.
Faustman EM, Silbernagel SM, Fenske RA, Burbacher TM, Ponce RA. Mechanisms underlying children’s susceptibility to environmental toxicants. Environ Health Perspect. 2000;108(Suppl 1):13–21.
CAS PubMed PubMed Central Article Google Scholar
Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet. 2000;355(9218):1875–81. https://doi.org/10.1016/S0140-6736(00)02293-5.
CAS Article PubMed Google Scholar
Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Investig. 2005;115(4):930–9. https://doi.org/10.1172/JCI22492.
CAS Article PubMed PubMed Central Google Scholar
Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79(2):83–9. https://doi.org/10.1111/j.1399-0039.2011.01820.x.
CAS Article PubMed Google Scholar
Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–9. https://doi.org/10.1038/nature05862.
CAS Article PubMed Google Scholar
Rube CE, Fricke A, Widmann TA, Furst T, Madry H, Pfreundschuh M, et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE. 2011;6(3): e17487. https://doi.org/10.1371/journal.pone.0017487.
CAS Article PubMed PubMed Central Google Scholar
Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 2014;15(1):37–50. https://doi.org/10.1016/j.stem.2014.04.016.
CAS Article PubMed PubMed Central Google Scholar
Moehrle BM, Nattamai K, Brown A, Florian MC, Ryan M, Vogel M, et al. Stem cell-specific mechanisms ensure genomic fidelity within HSCs and upon aging of HSCs. Cell Rep. 2015;13(11):2412–24. https://doi.org/10.1016/j.celrep.2015.11.030.
CAS Article PubMed PubMed Central Google Scholar
Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102(26):9194–9. https://doi.org/10.1073/pnas.0503280102.
CAS Article PubMed PubMed Central Google Scholar
Kim MJ, Kim MH, Kim SA, Chang JS. Age-related deterioration of hematopoietic stem cells. Int J Stem Cells. 2008;1(1):55–63. https://doi.org/10.15283/ijsc.2008.1.1.55.
Comments (0)