Creation and Development of Patient-Derived Organoids for Therapeutic Screening in Solid Cancer

DeVita VT, Chu E. A history of cancer chemotherapy. Can Res. 2008;68(21):8643–53. https://doi.org/10.1158/0008-5472.Can-07-6611.

CAS  Google Scholar 

Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86:102019-. https://doi.org/10.1016/j.ctrv.2020.102019.

Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109(6):952–63. https://doi.org/10.1016/j.fertnstert.2018.05.006.

PubMed  PubMed Central  Google Scholar 

Bear HD, Wan W, Robidoux A, Rubin P, Limentani S, White RL Jr, et al. Using the 21-gene assay from core needle biopsies to choose neoadjuvant therapy for breast cancer: a multicenter trial. J Surg Oncol. 2017;115(8):917–23. https://doi.org/10.1002/jso.24610.

CAS  PubMed  PubMed Central  Google Scholar 

Pease AM, Riba LA, Gruner RA, Tung NM, James TA. Oncotype DX(®) Recurrence score as a predictor of response to neoadjuvant chemotherapy. Ann Surg Oncol. 2019;26(2):366–71. https://doi.org/10.1245/s10434-018-07107-8.

PubMed  Google Scholar 

Scott JG, Berglund A, Schell MJ, Mihaylov I, Fulp WJ, Yue B, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017;18(2):202–11. https://doi.org/10.1016/S1470-2045(16)30648-9.

PubMed  Google Scholar 

Scott JG, Sedor G, Ellsworth P, Scarborough JA, Ahmed KA, Oliver DE, et al. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis. Lancet Oncol. 2021;22(9):1221–9. https://doi.org/10.1016/S1470-2045(21)00347-8.

PubMed  Google Scholar 

Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7(5):462–77. https://doi.org/10.1158/2159-8290.Cd-16-1154.

PubMed  PubMed Central  Google Scholar 

Mirabelli P, Coppola L, Salvatore M. Cancer cell lines are useful model systems for medical research. Cancers. 2019;11(8):1098. https://doi.org/10.3390/cancers11081098.

CAS  PubMed Central  Google Scholar 

Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29(12):1203–17. https://doi.org/10.1101/gad.261982.115.

CAS  PubMed  PubMed Central  Google Scholar 

Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51. https://doi.org/10.1016/j.biocel.2012.08.022.

CAS  PubMed  PubMed Central  Google Scholar 

Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P. Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol. 2017;10(1):106. https://doi.org/10.1186/s13045-017-0470-7.

CAS  PubMed  PubMed Central  Google Scholar 

Hicks WH, Bird CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, et al. Contemporary mouse models in glioma research. Cells. 2021;10(3). https://doi.org/10.3390/cells10030712.

Cheon DJ, Orsulic S. Mouse models of cancer. Annu Rev Pathol. 2011;6:95–119. https://doi.org/10.1146/annurev.pathol.3.121806.154244.

CAS  PubMed  Google Scholar 

Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007;7(9):645–58. https://doi.org/10.1038/nrc2192.

CAS  PubMed  Google Scholar 

Ledur PF, Onzi GR, Zong H, Lenz G. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries? Oncotarget. 2017;8(40):69185–97. https://doi.org/10.18632/oncotarget.20193.

Allen M, Bjerke M, Edlund H, Nelander S, Westermark B. Origin of the U87MG glioma cell line: good news and bad news. Sci Transl Med. 2016;8(354):354re3. https://doi.org/10.1126/scitranslmed.aaf6853.

Auman JT, McLeod HL. Colorectal cancer cell lines lack the molecular heterogeneity of clinical colorectal tumors. Clin Colorectal Cancer. 2010;9(1):40–7. https://doi.org/10.3816/CCC.2010.n.005.

CAS  PubMed  Google Scholar 

Gillet J-P, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105(7):452–8. https://doi.org/10.1093/jnci/djt007.

CAS  PubMed  PubMed Central  Google Scholar 

Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma stem cells: driving resilience through chaos. Trends Cancer. 2020;6(3):223–35. https://doi.org/10.1016/j.trecan.2020.01.009.

PubMed  PubMed Central  Google Scholar 

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. https://doi.org/10.1038/nrclinonc.2017.166.

CAS  PubMed  Google Scholar 

Aboulkheyr Es H, Montazeri L, Aref AR, Vosough M, Baharvand H. Personalized cancer medicine: an organoid approach. Trends Biotechnol. 2018;36(4):358–71. https://doi.org/10.1016/j.tibtech.2017.12.005.

CAS  PubMed  Google Scholar 

Langer EM, Allen-Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 2019;26(3):608-23.e6. https://doi.org/10.1016/j.celrep.2018.12.090.

CAS  PubMed  PubMed Central  Google Scholar 

Kamb A. Wha’’s wrong with our cancer models? Nat Rev Drug Discovery. 2005;4(2):161–5. https://doi.org/10.1038/nrd1635.

CAS  PubMed  Google Scholar 

Karim BO, Huso DL. Mouse models for colorectal cancer. Am J Cancer Res. 2013;3(3):240–50.

PubMed  PubMed Central  Google Scholar 

Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Can Res. 2006;66(7):3355–9. https://doi.org/10.1158/0008-5472.Can-05-3827.

CAS  Google Scholar 

Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9(2):137–53. https://doi.org/10.15252/emmm.201606857.

Li M, Izpisua Belmonte JC. Organoids — preclinical models of human disease. N Engl J Med. 2019;380(6):569–79. https://doi.org/10.1056/NEJMra1806175.

PubMed  Google Scholar 

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5. https://doi.org/10.1038/nature07935. This article was the first to create the organoid model system by developing three-dimensional crypt-villous structures from Lgr5+ intestinal stem cells.

CAS  PubMed  Google Scholar 

Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9. https://doi.org/10.1038/nature12517. This article outlined methodology for creation of the first cerebral organoids from human embryonic stem cells and induced pluripotent stem cells.

CAS  Google Scholar 

Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19(5):568–77. https://doi.org/10.1038/ncb3516.

CAS  PubMed  PubMed Central  Google Scholar 

Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14(1):53–67. https://doi.org/10.1016/j.stem.2013.11.010.

CAS  PubMed  Google Scholar 

Takasato M, Er PX, Chiu HS, Little MH. Generation of kidney organoids from human pluripotent stem cells. Nat Protoc. 2016;11(9):1681–92. https://doi.org/10.1038/nprot.2016.098.

CAS  PubMed  PubMed Central  Google Scholar 

Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14(2):518–40. https://doi.org/10.1038/s41596-018-0104-8.

CAS  PubMed  PubMed Central  Google Scholar 

Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci. 2014;111(46):16401–6. https://doi.org/10.1073/pnas.1409064111.

CAS  PubMed  PubMed Central  Google Scholar 

Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015;4. https://doi.org/10.7554/eLife.05098.

Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51–6. https://doi.org/10.1038/nature09941.

CAS  PubMed  Google Scholar 

Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc. 2019;14(11):3082–100. https://doi.org/10.1038/s41596-019-0213-z.

CAS  PubMed  Google Scholar 

Hohwieler M, Illing A, Hermann PC, Mayer T, Stockmann M, Perkhofer L, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 2017;66(3):473–86. https://doi.org/10.1136/gutjnl-2016-312423.

CAS  PubMed  Google Scholar 

Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ. 2021;28(1):35–51. https://doi.org/10.1038/s41418-020-0565-5.

PubMed  Google Scholar 

Bolck HA, Corrò C, Kahraman A, von Teichman A, Toussaint NC, Kuipers J, et al. Tracing clonal dynamics reveals that two- and three-dimensional patient-derived cell models capture tumor heterogeneity of clear cell renal cell carcinoma. Eur Urol Focus. 2021;7(1):152–62. https://doi.org/10.1016/j.euf.2019.06.009.

PubMed  Google Scholar 

Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1):373-86.e10. https://doi.org/10.1016/j.cell.2017.11.010. This article outlines successful creation of patient-derived breast cancer organoids with similar in vitro and in vivo drug responses.

CAS  PubMed  Google Scholar 

Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CM-C, Boedicker M, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nature Communications. 2020;11(1):1711. https://doi.org/10.1038/s41467-020-15548-7.

Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science (New York, NY). 2018;359(6378):920–6. https://doi.org/10.1126/science.aao2774.

CAS  Google Scholar 

Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. cell stem cell. 2018;23(6):882–97.e11. https://doi.org/10.1016/j.stem.2018.09.016.

Yamazaki S, Ohka F, Hirano M, Shiraki Y, Motomura K, Tanahashi K, et al. Newly established patient-derived organoid model of intracranial meningioma. Neuro Oncol. 2021. https://doi.org/10.1093/neuonc/noab155.

PubMed  Google Scholar 

Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515-28.e17. https://doi.org/10.1016/j.cell.2018.03.017.

CAS  PubMed  PubMed Central  Google Scholar 

Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35. https://doi.org/10.1038/nm.4438.

CAS 

Comments (0)

No login
gif