Kozlowski R, Wladyka-Przybylak MAR (2001) Natural polymers, wood and lignocellulosic materials. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Limited, Cambridge
Osborn EL (2016) From bauxite to cooking pots: aluminum, chemistry, and West African artisanal production. Hist Sci 54(4):425–442. https://doi.org/10.1177/0073275316681806
Pearse MJ (2003) Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry. Miner Eng 16(2):103–108. https://doi.org/10.1016/S0892-6875(02)00288-1
Ashkenazi D (2019) How aluminum changed the world: a metallurgical revolution through technological and cultural perspectives. Technol Forecast Soc Chang 143:101–113. https://doi.org/10.1016/j.techfore.2019.03.011
Baker I (2018) Aluminium/aluminum. Fifty materials that make the world. Springer, Cham. https://doi.org/10.1007/978-3-319-78766-4_2
Habashi F (2013) The beginnings of the aluminum industry. Nano studies 8:333–344
Le Roux M (2015) From science to industry: the sites of aluminium in France from the nineteenth to the twentieth century. Ambix 62(2):114–137. https://doi.org/10.1179/1745823415Y.0000000001
CAS Article PubMed Google Scholar
Eskin DG (2008) Physical metallurgy of direct chill casting of aluminum alloys. CRC Press, Taylor and Francis Group, New York
Buffington J (2012) The beverage can in the United States: achieving a 100% recycled aluminum can through supply chain innovation. JOM 64(8):923–932. https://doi.org/10.1007/s11837-012-0381-6
Anderson W (1888) Aluminium and its manufacture by the DEVILLE-CASTNER process. J Soc Arts 37:378
Hall C.M (1889) US Patent No. 400,664
Héroult P (1886) French Patent No. 175,711
McClung M, Ross JA (2000) A method to correlate raw material properties to baked anode core performance. Light Metals 2000:481–486
Kátai-Urbán L, Cséplı Z (2010) Disaster in the Ajak Red Mud sludge reservoir; Sixth Meeting of the Conference of the Parties to the Convention on the Transboundary Effects of Industrial Accidents. The Hague, 8–10 November 2010
Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P (2004) Red mud addition in the raw meal for the production of Portland cement clinker. J Haz Mater 116(1–2):103–110
Erςagğ E, Apak R (1997) Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig-iron. J Chem Tech Biotech 70(3):241–246
Altundogan HS, Altundogan S, Tumen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22:357–363
Anawati J, Reid S, Azimi G (2018) Innovative and sustainable valorization process to recover scandium and rare earth elements from Canadian BR. Extraction 2018:2715–2722
Urato N (2005) Wave mode coupling and instability in the internal wave in aluminum reduction cells. Light Metals 2016:455–460. https://doi.org/10.1007/978-3-319-48156-2_53
Kvande H, Haupin W (2001) Inert anodes for Al smelters: energy balances and environmental impact. JOM 53:29–33. https://doi.org/10.1007/s11837-001-0205-6
Thorne RJ, Sommerseth C, Ratvik AP, Rørvik S, Sandnes E, Lossius LP, Linga H, Svensson AM (2015) Correlation between coke type, microstructure and anodic reaction overpotential in aluminium electrolysis. J Electrochem Soc 162:E296. https://doi.org/10.1149/2.0461512jes
Thorne R, Sommerseth C, Ratvik AP, Rørvik S, Sandnes E, Lossius EP, Linga H, Svensson AM (2015) Bubble evolution and anode surface properties in aluminium electrolysis. J Electrochem Soc 162:E104. https://doi.org/10.1149/2.0321508jes
Sørlie M, Øye H (2010) Cathodes in aluminium electrolysis. Aluminium GmbH, Düsseldorf
Østrem Ø (2013) Cathode wear in Hall-Héroult cells. Ph.D. Thesis, NTNU (Norway)
Picard D, Bouzemmi W, Allard B, Alamdari H, Fafard M (2010) Thermo-Mechanical characterisation of graphitic and graphitized carbon cathode materials used in aluminium electrolysis cells. Light Metals 2010:823–828
Picard D, Sorelli L, Réthoré J, Alamdari H, Baril MA, Fafard M (2017) Identification of the stress intensity factor of carbon cathode by digital image correlation. Light Metals 2017:1275–1280. https://doi.org/10.1007/978-3-319-51541-0_152
Sørlie M, Øye H (1994) Cathodes in aluminium electrolysis. Aluminium, Düsseldorf
Grjotheim K, Næumann R, Oye H (1977) Formation of aluminum carbide in the presence of cryolite melts. Light Metals 1977:1
Keller F, Fischer WK (1992) Anode manufacturing in a changing environment: an overview. Light Metals 1992:673–686
Meier MW (1996) Cracking behaviour of anodes, PhD Thesis. Zurich: Federal Institute of Technology
Hulse KL (2000) Anode Manufacture Raw Materials Formulation and Processing Parameters (1st edn). R&D Carbon Ltd.
Belitskus DL, Danka DJ (2016) A comprehensive determination of effects of calcined petroleum coke properties on aluminum reduction cell anode properties. Light Metals 2016:59–72
Fischer WK, Perruchoud R (1987) Determining prebaked anode properties for aluminum production. JOM 39(11):43–45. https://doi.org/10.1007/BF03257539
Belitskus DL (1993) An evaluation of relative effects of coke, formulation, and baking factors on aluminum reduction cell anode performance. Light Metals 1993:677–681
Suriyapraphadilok U, Andersen JM, Halleck P, Grader A (2005) Anode butt cores: physical characterization and reactivity. JOM 57(2):35–41. https://doi.org/10.1007/s11837-005-0213-z
Alscher A, Wildforster R (1990) Performance of binder pitch with decreased QI-content in anode making—formation, nature, properties and substitution of quinoline insolubles. Light Metals 1990:232–238
Tayanchin AS, Frizorger VK, Kravtzova YD, Byront VS (2005) Studying mesophase contents in pitches from different sources. Light Metals 623–627
Sverdlin VA, Vedernikov GF, Fyodorov VK (1992) Optimization of technological parameters of aluminum production pot anode block vibration forming. Light Metals 1992:725–730
Auguie D, Oberlin M, Oberlin A, Hyvernat P (1981) Formation of thin mesophase layers at the interface between filler and binder in prebaked anodes. Effect of mixing on mesophase. Carbon 19(4):277–284. https://doi.org/10.1016/0008-6223(81)90073-7
Couderc P, Hyvernat P, Lemarchand JL (1986) Correlations between ability of pitch to penetrate coke and the physical characteristics of prebaked anodes for the aluminium industry. Fuel 65(2):281–287. https://doi.org/10.1016/0016-2361(86)90022-0
Rhedey PJ (1990) Laboratory evaluation of a low quinoline insolubles coal-tar pitch as anode binder. Light Metals 1990:605–608
Perruchoud RC, Meier MW, Werner K, Fischer WK, Olfgang HP (2001) Anode properties, cover materials and cell operation. Light Metals 2001:695–699
Perez M, Granda M, Santamaria R, Vina JA, Menedez R (2003) Formulation, structure and properties of carbon anodes from coal-tar pitch/petroleum pitch blends. Light Metals 2003:495–501
Fernandez JJ, Alonso F (2004) Anthracene oil synthetic pitch: a novel approach to hybrid pitches. Light Metals 499–502
Azari K, Alamdari H, Aryanpour GR, Picard D, Fafard M (2013) Mixing variables for prebaked anodes used in aluminum production. Powder Technol 235:341–348. https://doi.org/10.1016/j.powtec.2012.10.043
Mchenry HR, Baron JT, Krupinski KC (1998) Development of anode binder pitch laboratory characterization methods. Light Metals 1989:769–774
Vidvei T, Eidet T, Sørlie M (2003) Paste granulometry and soderberg anode properties. Light Metals 2003:569–574
Azari K (2013) Investigation of the materials and paste relationships to improve forming process and anode quality, Ph.D. Thesis, Université Laval (Canada)
Thibodeau S, Chaouki H, Alamdari H, Ziegler D, Fafard M (2014) High temperature compression test to determine the anode paste mechanical properties. Light Metals 2014:1129–1134
Zaidani M, Abu Al-Rub R, Tajik AR, Shamim T (2016) Effects of flue wall deformation on aluminum anode baking homogeneity and temperature distribution. the international committee for study of bauxite, alumina & aluminum–ICSOBA 2016. Travaux 45:367–369
Bain GA, Pruneau JP, Williams J (1971) The effect of prebake anode baking temperature on potroom performance. Light Metals 1971:444–449
Dreyer C (1989) Anode reactivity influence of the baking process. Light Metals 1989:478–485
Molenaar D, Sadler BA (2014) Anode rodding basics. Light Metals 2014:1263–1268
Russell AS (1981) Pitfalls and pleasures in new aluminum process development. Metall Trans B 12(2):203–215. https://doi.org/10.1007/BF02654453
Wang Z, Friis J, Ratvik AP (2018) Transport of sodium in TiB2 materials investigated by a laboratory test and DFT calculations. Light Metals 2018:1321–1328
Heidari H, Alamdari H, Dubé D, Schulz R (2012) Pressureless sintering of TiB2-based ceramics with Ti–Fe additives: sintering mechanism and stability in liquid aluminum. Adv Eng Mater 14(9):802–809. https://doi.org/10.1002/adem.201200067
Galasiu I, Galasiu R, Thonstad J (2007) Inert anodes for aluminium electrolysis. Aluminium, Düsseldorf
Hay SJ, Metson JB, Hylan MM (2004) Sulfur speciation in aluminum smelting anodes. Ind Eng Chem Res 43(7):1690–1700. https://doi.org/10.1021/ie0301031
Edwards L, Backhouse N, Darmstadt H, Dion MJ (2012) Evolution of anode grade coke quality. Light Metals 2012:1207–1212
Elkasabi Y, Darmstadt H, Boateng AA (2018) Renewable biomass-derived coke with texture suitable for aluminum smelting anodes. ACS Sustain Chem Eng 6(10):13324–13331. https://doi.org/10.1021/acssuschemeng.8b02963
Elkasabi Y, Omolayo Y, Saptari S (2021) Continuous calcination of biocoke/petcoke blends in a rotary tube furnace. ACS Sustain Chem Eng 9(2):695–703. https://doi.org/10.1021/acssuschemeng.0c06307
Huang X, Kocaefe D, Kocaefe Y (2018) Utilization of biocoke as a raw material for carbon anode production. Energy Fuels 32(8):8537–8544. https://doi.org/10.1021/acs.energyfuels.8b01832
Amara B, Faouzi FE, Kocaefe D, Kocaefe Y, Bhattacharyay D, Côté J, Gilbert A (2021) Modification of biocoke destined for the fabrication of anodes used in primary aluminum production. Fuel 304:121352. https://doi.org/10.1016/j.fuel.2021.121352
Hussein A, Larachi F, Ziegler D, Alamdari H (2016) Effects of heat treatment and acid washing on properties and reactivity of charcoal. Biomass Bioenerg 90:101–113. https://doi.org/10.1016/j.biombioe.2016.03.041
Hussein A, Fafard M, Ziegler D, Alamdari H (2017) Effects of charcoal addition on the properties of carbon anodes. Metals 7(3):98. https://doi.org/10.3390/met7030098
Comments (0)