High Rate of Initially Overlooked Kaplan Fiber Complex Injuries in Patients With Isolated Anterior Cruciate Ligament Injury: Letter to the Editor

1. Balendra, G, Willinger, L, Pai, V, et al. Anterolateral complex injuries occur in the majority of “isolated” anterior cruciate ligament ruptures [published online April 1, 2021]. Knee Surg Sports Traumatol Arthrosc. 2021;10.1007/s00167-021-06543-6.
Google Scholar | Crossref2. Batty, L, Murgier, J, O’Sullivan, R, et al. The Kaplan fibers of the iliotibial band can be identified on routine knee magnetic resonance imaging. Am J Sports Med. 2019;47(12):2895-2903.
Google Scholar | SAGE Journals | ISI3. Batty, LM, Murgier, J, Feller, JA, O’Sullivan, R, Webster, KE, Devitt, BM. Radiological identification of injury to the Kaplan fibers of the iliotibial band in association with anterior cruciate ligament injury. Am J Sports Med. 2020;48(9):2213-2220.
Google Scholar | SAGE Journals | ISI4. Bencardino, JT, Rosenberg, ZS, Brown, RR, et al. Traumatic musculotendinous injuries of the knee: diagnosis with MR imaging. Radiographics. 2000;20 Spec No:S103-s120.
Google Scholar | Crossref | Medline5. Berthold, DP, Willinger, L, LeVasseur, MR, et al. High rate of initially overlooked Kaplan fiber complex injuries in patients with isolated anterior cruciate ligament injury. Am J Sports Med. 2021;49(8):2117-2124.
Google Scholar | SAGE Journals | ISI6. Berthold, DP, Willinger, L, Muench, LN, et al. Visualization of proximal and distal Kaplan fibers using 3-dimensional magnetic resonance imaging and anatomic dissection. Am J Sports Med. 2020;48(8):1929-1936.
Google Scholar | SAGE Journals | ISI7. Boden, BP, Dean, GS, Feagin, JA, Garrett, WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573-578.
Google Scholar | Crossref | Medline | ISI8. Devitt, BM, Al’khafaji, I, Blucher, N, et al. Association between radiological evidence of Kaplan fiber injury, intraoperative findings, and pivot-shift grade in the setting of acute anterior cruciate ligament injury. Am J Sports Med. 2021;49(5):1262-1269.
Google Scholar | SAGE Journals | ISI9. Ferretti, A, Monaco, E, Fabbri, M, Maestri, B, De Carli, A. Prevalence and classification of injuries of anterolateral complex in acute anterior cruciate ligament tears. Arthroscopy. 2017;33(1):147-154.
Google Scholar | Crossref | Medline | ISI10. Ferretti, A, Monaco, E, Gaj, E, et al. Risk factors for grade 3 pivot shift in knees with acute anterior cruciate ligament injuries: a comprehensive evaluation of the importance of osseous and soft tissue parameters from the SANTI Study Group. Am J Sports Med. 2020;48(10):2408-2417.
Google Scholar | SAGE Journals | ISI11. Geeslin, AG, Chahla, J, Moatshe, G, et al. Anterolateral knee extra-articular stabilizers: a robotic sectioning study of the anterolateral ligament and distal iliotibial band Kaplan fibers. Am J Sports Med. 2018;46(6):1352-1361.
Google Scholar | SAGE Journals | ISI12. Geeslin, AG, Moatshe, G, Chahla, J, et al. Anterolateral knee extra-articular stabilizers: a robotic study comparing anterolateral ligament reconstruction and modified lemaire lateral extra-articular tenodesis. Am J Sports Med. 2018;46(3):607-616.
Google Scholar | SAGE Journals | ISI13. Getgood, A. The anterolateral complex: more than just one ligament. Tech Orthop. 2018;33(4):205.
Google Scholar | Crossref | Medline14. Getgood, A. Editorial Commentary: Imaging of the anterolateral ligament of the knee: The MR(eye) sees what the brain knows. Arthroscopy. 2018;34(9):2739-2742.
Google Scholar | Crossref | Medline15. Getgood, AMJ, Bryant, DM, Litchfield, R, et al. Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the STABILITY Study Randomized Clinical Trial. Am J Sports Med. 2020;48(2):285-297.
Google Scholar | SAGE Journals | ISI16. Godin, JA, Chahla, J, Moatshe, G, et al. A comprehensive reanalysis of the distal iliotibial band: quantitative anatomy, radiographic markers, and biomechanical properties. Am J Sports Med. 2017;45(11):2595-2603.
Google Scholar | SAGE Journals | ISI17. Herbst, E, Albers, M, Burnham, JM, et al. The anterolateral complex of the knee: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2017;25(4):1009-1014.
Google Scholar | Crossref | Medline18. Hortobagyi, T, Katch, FI. Eccentric and concentric torque-velocity relationships during arm flexion and extension. Influence of strength level. Eur J Appl Physiol Occup Physiol. 1990;60(5):395-401.
Google Scholar | Crossref | Medline19. Inderhaug, E, Stephen, JM, Williams, A, Amis, AA. Anterolateral tenodesis or anterolateral ligament complex reconstruction: effect of flexion angle at graft fixation when combined with ACL reconstruction. Am J Sports Med. 2017;45(13):3089-3097.
Google Scholar | SAGE Journals | ISI20. Inderhaug, E, Stephen, JM, Williams, A, Amis, AA. Biomechanical comparison of anterolateral procedures combined with anterior cruciate ligament reconstruction. Am J Sports Med. 2017;45(2):347-354.
Google Scholar | SAGE Journals | ISI21. Kaplan, EB . The iliotibial tract; clinical and morphological significance. J Bone Joint Surg Am. 1958;40-A(4):817-832.
Google Scholar | Crossref | Medline22. Khanna, M, Gupte, C, Dodds, A, Williams, A, Walker, M. Magnetic resonance imaging appearances of the capsulo-osseous layer of the iliotibial band and femoral attachments of the iliotibial band in the normal and pivot-shift ACL injured knee. Skeletal Radiol. 2019; 48(5):729-740.
Google Scholar | Crossref | Medline23. Kittl, C, El-Daou, H, Athwal, KK, et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med. 2016;44(2):345-354.
Google Scholar | SAGE Journals | ISI24. Kittl, C, El-Daou, H, Athwal, KK, et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee: response. Am J Sports Med. 2016;44(4):NP15-18.
Google Scholar | SAGE Journals25. Kittl, C, Halewood, C, Stephen, JM, et al. Length change patterns in the lateral extra-articular structures of the knee and related reconstructions. Am J Sports Med. 2015;43(2):354-362.
Google Scholar | SAGE Journals | ISI26. Kittl, C, Inderhaug, E, Williams, A, Amis, AA. Biomechanics of the anterolateral structures of the knee. Clin Sports Med. 2018;37(1):21-31.
Google Scholar | Crossref | Medline27. Marom, N, Greditzer, HGt, Roux, M, et al. The incidence of Kaplan fiber injury associated with acute anterior cruciate ligament tear based on magnetic resonance imaging. Am J Sports Med. 2020;48(13):3194-3199.
Google Scholar | SAGE Journals | ISI28. Monaco, E, Helito, CP, Redler, A, et al. Correlation between magnetic resonance imaging and surgical exploration of the anterolateral structures of the acute anterior cruciate ligament-injured knee. Am J Sports Med. 2019;47(5):1186-1193.
Google Scholar | SAGE Journals | ISI29. Terry, GC, Norwood, LA, Hughston, JC, Caldwell, KM. How iliotibial tract injuries of the knee combine with acute anterior cruciate ligament tears to influence abnormal anterior tibial displacement. Am J Sports Med. 1993;21(1):55-60.
Google Scholar | SAGE Journals | ISI30. Van Dyck, P, De Smet, E, Roelant, E, Parizel, PM, Heusdens, CHW. Assessment of anterolateral complex injuries by magnetic resonance imaging in patients with acute rupture of the anterior cruciate ligament. Arthroscopy. 2019;35(2):521-527.
Google Scholar | Crossref | Medline31. Williams, A. Author reply to letters to the editor from Sonnery-Cottet et al and Ferretti. Arthroscopy. 2018;34(8):2266-2268.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif