1.
Alnaqeeb, MA, Al Zaid, NS, Goldspink, G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J Anat. 1984;139(pt 4):677–689.
Google Scholar |
Medline2.
An, KN . Muscle force and its role in joint dynamic stability. Clin Orthop Relat Res. 2002;(403 suppl):S37–S42.
Google Scholar |
Crossref |
Medline3.
Ando, R, Suzuki, Y. Positive relationship between passive muscle stiffness and rapid force production. Hum Mov Sci. 2019;66:285–291.
Google Scholar |
Crossref |
Medline4.
Bell, AL, Brand, RA, Pedersen, DR. Prediction of hip-joint center location from external landmarks. Hum Mov Sci. 1989;8(1):3–16.
Google Scholar |
Crossref |
ISI5.
Bryant, AL, Newton, RU, Steele, J. Successful feed-forward strategies following ACL injury and reconstruction. J Electromyogr Kinesiol. 2009;19(5):988–997.
Google Scholar |
Crossref |
Medline6.
Cimino, F, Volk, BS, Setter, D. Anterior cruciate ligament injury: diagnosis, management, and prevention. Am Fam Physician. 2010;82(8):917–922.
Google Scholar |
Medline7.
Cohen, J . Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Lawrence Erlbaum Associates Publishers; 1988.
Google Scholar8.
de Ruiter, CJ, Hoddenbach, JG, Huurnink, A, de Haan, A. Relative torque contribution of vastus medialis muscle at different knee angles. Acta Physiol. 2008;194(3):223–237.
Google Scholar |
Crossref |
Medline9.
Dhaher, YY, Tsoumanis, AD, Houle, TT, Rymer, WZ. Neuromuscular reflexes contribute to knee stiffness during valgus loading. J Neurophysiol. 2005;93(5):2698–2709.
Google Scholar |
Crossref |
Medline10.
Di Stasi, SL, Logerstedt, D, Gardinier, ES, Snyder-Mackler, L. Gait patterns differ between ACL-reconstructed athletes who pass return-to-sport criteria and those who fail. Am J Sports Med. 2013;41(6):1310–1318.
Google Scholar |
SAGE Journals |
ISI11.
Duffell, LD, Hope, N, McGregor, AH. Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon’s Plug-in Gait. Proc Inst Mech Eng H. 2014;228(2):206–210.
Google Scholar |
SAGE Journals |
ISI12.
Eiling, E, Bryant, A, Petersen, W, Murphy, A, Hohmann, E. Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc. 2007;15(2):126–132.
Google Scholar |
Crossref |
Medline |
ISI13.
Fahad, F, Aljowair, LCH. The relationship between hop performance and lower extremities muscle strength. Int J Med Sci Clin Invent. 2018;5(3):3714–3720.
Google Scholar |
Crossref14.
Fitzgerald, GK, Lephart, SA, Hwang, JH, Wainner, MRS. Hop tests as predictors of dynamic knee stability. J Orthop Sport Phys Ther. 2001;31(10):588–597.
Google Scholar |
Crossref |
Medline |
ISI15.
Freitas, SR, Andrade, RJ, Larcoupaille, L, Mil-homens, P, Nordez, A. Muscle and joint responses during and after static stretching performed at different intensities. Eur J Appl Physiol. 2015;115(6):1263–1272.
Google Scholar |
Crossref |
Medline16.
Gokeler, A, Hof, A, Arnold, M, et al. Abnormal landing strategies after ACL reconstruction. Scand J Med Sci Sports. 2010;20(1): e12–e19.
Google Scholar |
Crossref |
Medline17.
Griffin, LY, Agel, J, Albohm, MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–150.
Google Scholar |
Crossref |
Medline18.
Harput, G, Soylu, AR, Ertan, H, Ergun, N, Mattacola, CG. Effect of gender on the quadriceps-to-hamstrings coactivation ratio during different exercises. J Sport Rehabil. 2014;23(1):36–43.
Google Scholar |
Crossref |
Medline19.
He, X, Huang, WY, Leong, HT, et al. Decreased passive muscle stiffness of vastus medialis is associated with poorer quadriceps strength and knee function after anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon). 2021;82:105289.
Google Scholar20.
He, X, Leong, HT, Lau, OY, Ong, MT, Yung, PS. Altered neuromuscular activity of the lower-extremities during landing tasks in patients with anterior cruciate ligament reconstruction: a systematic review of electromyographic studies. J Sport Rehabil. 2020;29(8):1194–1203.
Google Scholar |
Crossref |
Medline21.
Heinert, BL, Collins, T, Tehan, C, Ragan, R, Kernozek, TW. Effect of hamstring-to-quadriceps ratio on knee forces in females during landing. Int J Sports Med. 2021;42(03):264–269.
Google Scholar |
Crossref |
Medline22.
Hermens, HJ, Freriks, B, Disselhorst-Klug, C, Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374.
Google Scholar |
Crossref |
Medline |
ISI23.
Hoshino, Y, Fu, FH, Irrgang, JJ, Tashman, S. Can joint contact dynamics be restored by anterior cruciate ligament reconstruction? Clin Orthop Relat Res. 2013;471(9):2924–2931.
Google Scholar |
Crossref |
Medline |
ISI24.
Hug, F, Tucker, K, Gennisson, JL, Tanter, M, Nordez, A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–133.
Google Scholar |
Crossref |
Medline25.
Hughes, G, Dally, N. Gender difference in lower limb muscle activity during landing and rapid change of direction. Sci Sports. 2015;30(3):163–168.
Google Scholar |
Crossref26.
Ichihashi, N, Umegaki, H, Ikezoe, T, et al. The effects of a 4-week static stretching programme on the individual muscles comprising the hamstrings. J Sports Sci. 2016;34(23):2155–2159.
Google Scholar |
Crossref |
Medline27.
Irrgang, JJ, Anderson, AF, Boland, AL, et al. Development and validation of the International Knee Documentation Committee subjective knee form. Am J Sports Med. 2001;29(5):600–613.
Google Scholar |
SAGE Journals |
ISI28.
Johnston, PT, McClelland, JA, Webster, KE. Lower limb biomechanics during single-leg landings following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2018;48(9):2103–2126.
Google Scholar |
Crossref |
Medline29.
Kawai, M, Taniguchi, K, Suzuki, T, Katayose, M. Estimation of quadriceps femoris muscle dysfunction in the early period after surgery of the knee joint using shear-wave elastography. BMJ Open Sport Exerc Med. 2018;4(1):e000381.
Google Scholar |
Crossref |
Medline30.
Konishi, Y, Aihara, Y, Sakai, M, Ogawa, G, Fukubayashi, T. Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports. 2007;17(4):393–399.
Google Scholar |
Medline31.
Kotsifaki, A, Korakakis, V, Whiteley, R, Van Rossom, S, Jonkers, I. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: a systematic review and meta-analysis. Br J Sports Med. 2020;54(3):139–153.
Google Scholar |
Crossref |
Medline32.
Krosshaug, T, Nakamae, A, Boden, BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359–367.
Google Scholar |
SAGE Journals |
ISI33.
Lacourpaille, L, Nordez, A, Hug, F, et al. Early detection of exercise-induced muscle damage using elastography. Eur J Appl Physiol. 2017;117(10):2047–2056.
Google Scholar |
Crossref |
Medline34.
Lee, J, Lee, K, Kim, J. Effect of shoe heel to toe drop and strike patterns in sole angle. Footwear Sci. 2013;5(suppl): S48–S49.
Google Scholar |
Crossref35.
Lepley, AS, Kuenze, CM. Hip and knee kinematics and kinetics during landing tasks after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. J Athl Train. 2018;53(2):144–159.
Google Scholar |
Crossref |
Medline36.
Letafatkar, A, Rajabi, R, Tekamejani, EE, Minoonejad, H. Effects of perturbation training on knee flexion angle and quadriceps to hamstring cocontraction of female athletes with quadriceps dominance deficit: pre-post intervention study. Knee. 2015;22(3):230–236.
Google Scholar |
Crossref |
Medline37.
Logerstedt, D, Grindem, H, Lynch, A, et al. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med. 2012;40(10):2348–2356.
Google Scholar |
SAGE Journals |
ISI38.
Longo, S, Ce, E, Rampichini, S, et al. Correlation between stiffness and electromechanical delay components during muscle contraction and relaxation before and after static stretching. J Electromyogr Kinesiol. 2017;33:83–93.
Google Scholar |
Crossref |
Medline39.
Marcon, M, Ciritsis, B, Laux, C, et al. Quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction. J Magn Reson Imaging. 2015;42(2):515–525.
Google Scholar |
Crossref |
Medline40.
McPherson, AL, Bates, NA, Haider, CR, et al. Thigh musculature stiffness during active muscle contraction after anterior cruciate ligament injury. BMC Musculoskelet Dis. 2020;21(1).
Google Scholar |
Crossref |
Medline41.
Nomura, Y, Kuramochi, R, Fukubayashi, T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2015;25(3):301–307.
Google Scholar |
Crossref |
Medline |
ISI42.
Oberlander, KD, Bruggemann, GP, Hoher, J, Karamanidis, K. Altered landing mechanics in ACL-reconstructed patients. Med Sci Sports Exerc. 2013;45(3):506–513.
Google Scholar |
Crossref |
Medline |
ISI43.
Olsen, OE, Myklebust, G, Engebretsen, L, Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball a systematic video analysis. Am J Sports Med. 2004;32(4):1002–1012.
Google Scholar |
SAGE Journals |
ISI44.
Otzel, DM, Chow, JW, Tillman, MD. Long-term deficits in quadriceps strength and activation following anterior cruciate ligament reconstruction. Phys Ther Sport. 2015;16(1):22–28.
Google Scholar |
Crossref |
Medline |
ISI45.
Palmieri-Smith, RM, Thomas, AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev. 2009;37(3):147–153.
Google Scholar |
Crossref |
Medline |
ISI46.
Palmieri-Smith, RM, Wojtys, EM, Ashton-Miller, JA. Association between preparatory muscle activation and peak valgus knee angle. J Electromyogr Kinesiol. 2008;18(6):973–979.
Google Scholar |
Crossref |
Medline47.
Paterno, MV, Rauh, MJ, Schmitt, LC, Ford, KR, Hewett, TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116–121.
Google Scholar |
Crossref |
Medline |
ISI48.
Paterno, MV, Schmitt, LC, Ford, KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–1978.
Google Scholar |
SAGE Journals |
ISI49.
Point, M, Guilhem, G, Hug, F, et al. Cryotherapy induces an increase in muscle stiffness. Scand J Med Sci Sports. 2018;28(1):260–266.
Google Scholar |
Crossref |
Medline
Comments (0)