1. Conte, MS, Bradbury, AW, Kolh, P, et al. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur J Vasc Endovasc Surg : The Official Journal of the European Society for Vascular Surgery 2019; 58: S1–S109, e33.
Google Scholar |
Crossref |
Medline2. Constans, J, Bura-Rivière, A, Visona, A, et al. Urgent need to clarify the definition of chronic critical limb ischemia - a position paper from the European Society for Vascular Medicine. VASA. Zeitschrift fur Gefasskrankheiten 2019; 48: 223–227.
Google Scholar |
Crossref |
Medline3. Salaun, P, Desormais, I, Lapébie, F-X, et al. Comparison of ankle pressure, systolic toe pressure, and transcutaneous oxygen pressure to predict major amputation after 1 year in the COPART cohort. Angiology 2019; 70: 229–236.
Google Scholar |
SAGE Journals |
ISI4. Thompson, MM, Sayers, RD, Varty, K, Reid, A, London, NJM, Bell, PRF. Chronic critical leg ischaemia must be redefined. Eur J Vasc Surg 1993; 7: 420–426.
Google Scholar |
Crossref |
Medline5. Frank, U, Nikol, S, Belch, J. 5 Conservative treatment for PAD - Risk factor management. Vasa 2019; 48: 1–12.
Google Scholar |
Medline6. Mills, JL, Conte, MS, Armstrong, DG, et al. The society for vascular surgery lower extremity threatened limb classification system: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J Vasc Surg 2014; 59: 220e1–2342.
Google Scholar |
Crossref7. Carter, SA, Lezack, JD. Digital Systolic Pressures in the Lower Limb in Arterial Disease. Circulation 1971; 43: 905–914.
Google Scholar |
Crossref |
Medline |
ISI8. Høyer, C, Sandermann, J, Paludan, JP, Pavar, S, Petersen, LJ. Diagnostic accuracy of laser Doppler flowmetry versus strain gauge plethysmography for segmental pressure measurement. J Vasc Surg 2013; 58: 1563–1570.
Google Scholar |
Crossref |
Medline |
ISI9. Andersson, S, Linderholm, H, Rinnström, O, Burlin, L. A laser Doppler technique for measuring distal blood-pressure: a comparison with conventional strain-gauge technique. Clin Physiol 1986; 6: 329–335.
Google Scholar |
Crossref |
Medline10. Pérez-Martin, A, Meyer, G, Demattei, C, et al. Validation of a fully automatic photoplethysmographic device for toe blood pressure measurement. Eur J Vasc Endovasc Surg 2010; 40: 515–520.
Google Scholar |
Crossref |
Medline11. Bonham, PA, Kelechi, T, Mueller, M, Robison, J. Are toe pressures measured by a portable photophlethysmograph equivalent to standard laboratory tests? J Wound, Ostomy Cont Nurs 2010; 37: 475–486.
Google Scholar |
Crossref |
Medline12. Bhamidipaty, V, Dean, A, Yap, SL, et al. Second toe systolic pressure measurements are valid substitutes for first toe systolic pressure measurements in diabetic patients: A prospective study. Eur J Vasc Endovasc Surg 2015; 49: 77–82.
Google Scholar |
Crossref |
Medline13. Påhlsson, HI, Jörneskog, G, Wahlberg, E. The cuff width influences the toe blood pressure value. Vasa 2004; 33: 215–218.
Google Scholar |
Crossref |
Medline14. Påhlsson, HI, Laskar, C, Stark, K, Andersson, A, Jogestrand, T, Wahlberg, E. The optimal cuff width for measuring toe blood pressure. Angiology 2007; 58: 472–476.
Google Scholar |
SAGE Journals |
ISI15. Høyer, C, Biurrun Manresa, JA, Petersen, LJ. Number of distal limb and brachial pressure measurements required when diagnosing peripheral arterial disease by laser Doppler flowmetry. Physiol Meas 2013; 34: 1351–1362.
Google Scholar |
Crossref |
Medline16. Lin, LI-K . A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989; 45: 255.
Google Scholar |
Crossref |
Medline |
ISI17. Martin Bland, J, Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 327: 307–310.
Google Scholar |
Crossref18. Ubbink, DT . Toe blood pressure measurements in patients suspected of leg ischaemia: A new laser Doppler device compared with photoplethysmography. Eur J Vasc Endovasc Surg 2004; 27: 629–634.
Google Scholar |
Crossref |
Medline |
ISI19. Glargaard, GL, Høyer, C, Høgh, A. Bedside toe pressures measurements in a department of vascular surgery: a study of diagnostic accuracy. Eur J Vasc Endovasc Surg 2020; 59: 965–971.
Google Scholar |
Crossref |
Medline20. Twomey, PJ . How to use difference plots in quantitative method comparison studies. Ann Clin Biochem: International Journal of Laboratory Medicine 2006; 43: 124–129.
Google Scholar |
SAGE Journals |
ISI21. Feng, C, Wang, H, Lu, N, Tu, XM. Log transformation: application and interpretation in biomedical research. Stat Med 2013; 32: 230–239.
Google Scholar |
Crossref |
Medline22. Widmer, LW, Vikatmaa, P, Aho, P, Lepäntalo, M, Venermo, M. Reliability and repeatability of toe pressures measured with laser Doppler and portable and stationary photoplethysmography devices. Ann Vasc Surg 2012; 26: 404–410.
Google Scholar |
Crossref |
Medline |
ISI23. De Graaff, JC, Ubbink, DT, Legemate, DA, De Haan, RJ, Jacobs, MJHM. The usefulness of a laser Doppler in the measurement of toe blood pressuresoppler in the measurement of toe blood pressures. Journal of Vascular SurgeryJ Vasc Surg 2000; 32: 1172–1179.
Google Scholar |
Crossref |
Medline |
ISI24. Partik, BL, Stadler, A, Schamp, S, et al. 3D Versus 2D Ultrasound. Invest Radiol 2002; 37: 489–495.
Google Scholar |
Crossref |
Medline25. Landis, JR, Koch, GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159.
Google Scholar |
Crossref |
Medline |
ISI26. Leenstra, B, Wijnand, J, Verhoeven, B, et al. Applicability of transcutaneous oxygen tension measurement in the assessment of chronic limb-threatening ischemia. Angiology 2019; 71: 208–216.
Google Scholar |
SAGE Journals
Comments (0)