1.
Kinney, HC, Volpe, JJ. Encephalopathy of prematurity: neuropathology. In: Volpe, JJ, Inder, TE, Darras, BT, et al. eds. Volpe’s Neurology of the Newborn (Sixth Edition). Elsevier; 2018:389–404.
Google Scholar |
Crossref2.
Volpe, JJ . Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–124.
Google Scholar |
Crossref |
Medline |
ISI3.
Volpe, JJ . Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol. 2011;70(4):525–529.
Google Scholar |
Crossref |
Medline4.
Barkovich, A, Raybaud, C. Pediatric Neuroimaging. Lippincott Williams & Wilkins; 2012.
Google Scholar5.
Volpe, JJ. Hypoxic-ischemic encephalopathy: neuropathology and pathogenesis. In: Neurology of the Newborn. Elsevier; 2001.
https://ci.nii.ac.jp/naid/10015436283/ Google Scholar6.
Neil, JJ, Volpe, JJ. Encephalopathy of prematurity: clinical-neurological features, diagnosis, imaging, prognosis, therapy. In: Volpe, JJ, Inder, TE, Darras, BT, et al. eds. Volpe’s Neurology of the Newborn (Sixth Edition). Elsevier; 2018:425–457.
Google Scholar |
Crossref7.
Marret, S, Mukendi, R, Gadisseux, JF, Gressens, P, Evrard, P. Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol. 1995;54(3):358–370.
Google Scholar |
Crossref |
Medline8.
Van Haastert, IC, Groenendaal, F, Uiterwaal, CSPM, et al. Decreasing incidence and severity of cerebral palsy in prematurely born children. J Pediatr. 2011;159(1):86–91.e1.
Google Scholar |
Crossref |
Medline9.
Favrais, G, van de Looij, Y, Fleiss, B, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011;70(4):550–565.
Google Scholar |
Crossref |
Medline10.
Back, SA, Volpe, JJ. Encephalopathy of prematurity: pathophysiology. In: Volpe, JJ, Inder, TE, Darras, BT, et al. eds. Volpe’s Neurology of the Newborn (Sixth Edition). Elsevier; 2018:405–424.
Google Scholar |
Crossref11.
Fern, R . Ischemia: astrocytes show their sensitive side. Prog Brain Res. 2001;132:405–411.
Google Scholar |
Crossref |
Medline12.
Raybaud, C . The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology. 2010;52(6):447–477.
Google Scholar |
Crossref |
Medline13.
Argyropoulou, MI, Mouka, VC, Xydis, VG. Neonatal hypoxia-ischemia. Clin Neuroradiol. 2019:1585–1608. doi:10.1007/978-3-319-68536-6_31.
Google Scholar |
Crossref14.
Zaghloul, N, Ahmed, M. Pathophysiology of periventricular leukomalacia: what we learned from animal models. Neural Regeneration Res. 2017;12(11):1795–1796.
Google Scholar |
Crossref |
Medline15.
Volpe, JJ . The encephalopathy of prematurity—brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol. 2009;16(4):167–178.
Google Scholar |
Crossref |
Medline16.
Vesoulis, ZA, Inder, TE, Woodward, LJ, Buse, B, Vavasseur, C, Mathur, AM. Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res. 2014;75(4):564–569.
Google Scholar |
Crossref |
Medline17.
Lee, RW, Poretti, A, Cohen, JS, et al. A diagnostic approach for cerebral palsy in the genomic era. Neuromolecular Med. 2014;16(4):821–844.
Google Scholar |
Crossref |
Medline |
ISI18.
Shang, Q, Ma, C-Y, Lv, N, et al. Clinical study of cerebral palsy in 408 children with periventricular leukomalacia. Exp Ther Med. 2015;9(4):1336–1344.
Google Scholar |
Crossref |
Medline19.
Diadori, P . Cerebral dysgenesis: embryology and clinical expression. 1992. By Harvey, B . Sarnat. Published by Oxford University Press. 473 pages. SCDN 105.00. Can J Neurol Sci. 1995;22(1):77–77.
Google Scholar |
Crossref20.
Volpe, JJ . Confusions in nomenclature: “periventricular leukomalacia” and “white matter injury”—identical, distinct, or overlapping? Pediatr Neurol. 2017;73:3–6.
Google Scholar |
Crossref |
Medline21.
Pierson, CR, Folkerth, RD, Billiards, SS, et al. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol. 2007;114(6):619–631.
Google Scholar |
Crossref |
Medline22.
Lasry, O, Shevell, MI, Dagenais, L, REPACQ Consortium . Cross-sectional comparison of periventricular leukomalacia in preterm and term children. Neurology. 2010;74(17):1386–1391.
Google Scholar |
Crossref |
Medline |
ISI23.
Miller, SP, Shevell, MI, Patenaude, Y, O’Gorman, AM. Neuromotor spectrum of periventricular leukomalacia in children born at term. Pediatr Neurol. 2000;23(2):155–159.
Google Scholar |
Crossref |
Medline24.
Kirton, A, Armstrong-Wells, J, Chang, T, et al. Symptomatic neonatal arterial ischemic stroke: the International Pediatric Stroke Study. Pediatrics. 2011;128(6): e1402–e1410.
Google Scholar |
Crossref |
Medline |
ISI25.
Liauw, L, van der Grond, J, Slooff, V, et al. Differentiation between peritrigonal terminal zones and hypoxic-ischemic white matter injury on MRI. Eur J Radiol. 2008;65(3):395–401. doi:10.1016/j.ejrad.2007.04.016
Google Scholar |
Crossref |
Medline26.
Yakovlev, PL, Lecours, AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski, A. , ed. Regional Development of the Brain in Early Life. Blackwell; 3–70.
Google Scholar27.
Yeom, JS, Kim, Y-S, Seo, J-H, et al. Distinctive pattern of white matter injury in neonates with rotavirus infection. Neurology. 2015;84(1):21–27.
Google Scholar |
Crossref |
Medline28.
Maria, A, Vallamkonda, N, Shukla, A, Bhatt, A, Sachdev, N. Encephalitic presentation of neonatal chikungunya: a case series. Indian Pediatr. 2018;55(8):671–674.
Google Scholar |
Crossref |
Medline29.
Verboon-Maciolek, MA, Groenendaal, F, Hahn, CD, et al. Human parechovirus causes encephalitis with white matter injury in neonates. Ann Neurol. 2008;64(3):266–273.
Google Scholar |
Crossref |
Medline30.
Morriss, FH, Lindower, JB, Bartlett, HL, et al. Neonatal enterovirus infection: case series of clinical sepsis and positive cerebrospinal fluid polymerase chain reaction test with myocarditis and cerebral white matter injury complications. AJP Rep. 2016;6(3): e344–e351.
Google Scholar |
Crossref |
Medline31.
Belcastro, V, Bini, P, Barachetti, R, Barbarini, M. Teaching neuroimages: neonatal parechovirus encephalitis: typical MRI findings. Neurology. 2014;82(3): e23.
Google Scholar |
Crossref |
Medline32.
Verboon-Maciolek, MA, Groenendaal, F, Cowan, F, Govaert, P, van Loon, AM, de Vries, LS. White matter damage in neonatal enterovirus meningoencephalitis. Neurology. 2006;66(8):1267–1269. doi:10.1212/01.wnl.0000208429.69676.23
Google Scholar |
Crossref |
Medline33.
Volpe, JJ . Neonatal encephalitis and white matter injury: more than just inflammation? Ann Neurol. 2008;64(3):232–236.
Google Scholar |
Crossref |
Medline34.
Kirton, A, Shroff, M, Pontigon, A-M, deVeber, G. Risk factors and presentations of periventricular venous infarction vs arterial presumed perinatal ischemic stroke. Arch Neurol. 2010;67(7). doi:10.1001/archneurol.2010.140
Google Scholar |
Crossref |
Medline35.
Arrigoni, F, Parazzini, C, Righini, A, et al. Deep medullary vein involvement in neonates with brain damage: an MR imaging study. AJNR Am J Neuroradiol. 2011;32(11):2030–2036.
Google Scholar |
Crossref |
Medline36.
Mankad, K, Biswas, A, Espagnet, MCR, et al. Venous pathologies in paediatric neuroradiology: from foetal to adolescent life. Neuroradiology. November 9, 2019. doi:10.1007/s00234-019-02294-x.
Google Scholar37.
Abou-Hamden, A, Drake, JM. Hydrocephalus and arachnoid cysts. In Swaiman, KF, Ashwal, S, Ferriero, DM, et al. eds. Swaiman’s Pediatric Neurology. Elsevier; 2017:226–232.
Google Scholar |
Crossref38.
McMullan, PJ, Romanowski, CAJ. Radiological assessment of hydrocephalus treatment and treatment-related complications. Clin Neuroradiol. 2019:579–597. doi:10.1007/978-3-319-68536-6_15.
Google Scholar |
Crossref |
Medline39.
Akbari, SHA, Limbrick, DD, McKinstry, RC, et al. Periventricular hyperintensity in children with hydrocephalus. Pediatr Radiol. 2015;45(8):1189–1197. doi:10.1007/s00247-015-3298-8.
Google Scholar |
Crossref |
Medline40.
Abbott, R, Epstein, FJ, Wisoff, JH. Chronic headache associated with a functioning shunt: usefulness of pressure monitoring. Neurosurgery. 1991;28(1):72–76; discussion 76-77.
Google Scholar |
Crossref |
Medline |
ISI41.
Kortüm, F, Jamra, RA, Alawi, M, et al. Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9. Eur J Hum Genet. 2018;26(5):695–708.
Google Scholar |
Crossref |
Medline42.
Accogli, A, Iacomino, M, Pinto, F, Orsini, A. Novel AMPD2 mutation in pontocerebellar hypoplasia, dysmorphisms, and teeth abnormalities. Neurology. 2017.
https://ng.neurology.org/content/3/5/e179.short.
Google Scholar |
Crossref43.
Scola, E, Ganau, M, Robinson, R, et al. Neuroradiological findings in three cases of pontocerebellar hypoplasia type 9 due to mutation: typical MRI appearances and pearls for differential diagnosis. Quant Imaging Med Surg. 2019;9(12):1966–1972.
Google Scholar |
Crossref |
Medline44.
Meuwissen, MEC, Halley, DJJ, Smit, LS, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med. 2015;17(11):843–853.
Google Scholar |
Crossref |
Medline45.
Shah, S, Ellard, S, Kneen, R, et al. Childhood presentation of COL4A1 mutations. Dev Med Child Neurol. 2012;54(6):569–574.
Google Scholar |
Crossref |
Medline46.
Faber, I, Servelhere, KR, Martinez, ARM, Lopes-Cendes, I, França, MC Others. Clinical features and management of hereditary spastic paraplegia. Arq Neuropsiquiatr. 2014;72(3):219–226.
Google Scholar |
Crossref |
Medline47.
Garaci, F, Toschi, N, Lanzafame, S, et al. Diffusion tensor imaging in SPG11- and SPG4-linked hereditary spastic paraplegia. Int J Neurosci. 2014;124(4):261–270. doi:10.3109/00207454.2013.836705
Google Scholar |
Crossref |
Medline48.
Graça, FF, da, da Graça, FF, de Rezende, TJR, et al. Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol. 2019;9. doi:10.3389/fneur.2018.01117.
Google Scholar |
Crossref |
Medline49.
Ebrahimi-Fakhari, D, Teinert, J, Behne, R, et al. Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain. 2020;143(10):2929–2944.
Google Scholar |
Medline50.
Kamate, M, Detroja, M. Clinico-investigative profile of hereditary spastic paraplegia in children. Ann Indian Acad Neurol. 2019;22(3):341.
Google Scholar |
Crossref |
Medline51.
Chong, JX, Caputo, V, Phelps, IG, et al. Recessive inactivating mutations in TBCK, encoding a rab GTPase-activating protein, cause severe infantile syndromic encephalopathy. Am J Hum Genet. 2016;98(4):772–781.
Google Scholar |
Crossref |
Medline52.
Beck-Wödl, S, Harzer, K, Sturm, M, et al. Homozygous TBC1 domain-containing kinase (TBCK) mutation causes a novel lysosomal storage disease—a new type of neuronal ceroid lipofuscinosis (CLN15)? Acta Neuropathol Commun. 2018;6(1). doi:10.1186/s40478-018-0646-6.
Comments (0)