1. Tanner, K, Sabrine, N, Wren, C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116(6):e833-e838.
Google Scholar |
Crossref |
Medline2. Preterm birth . Available at https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm. Accessed October 20, 2021.
Google Scholar3. Nebhard, WN, Salemi, JL, Hauser, KW, Kornosky, JL. Are there ethnic disparities in risk of preterm birth among infants born with congenital heart defects? Birth Defects Res A Clin Mol Teratol. 2007 Nov;79(11):754-764.
Google Scholar |
Crossref |
Medline4. Jenkins, KJ, Gauvreau, K. Center-specific differences in mortality: preliminary analyses using the risk adjustment in congenital heart surgery (RACHS-1) method. Journal of Thoracic & Cardiovascular Surgery. 2002;124(1):97-104.
Google Scholar |
Crossref |
Medline |
ISI5. Chu, PY, Li, JS, Kosinski, AS, Hornik, CP, Hill, KD. Congenital heart disease in premature infants 25–32 Weeks’ gestational Age. J Pediatr. 2017;181:37–41 e1.
Google Scholar |
Crossref6. Steurer, MA, Baer, RJ, Keller, RL, et al. Gestational Age and outcomes in critical congenital heart disease. Pediatrics. 2017;140(4):e20170999.
Google Scholar |
Crossref |
Medline7. Madar, J, Richmond, S, Hey, E. Surfactant-deficient respiratory distress after elective delivery at ‘term’. Acta Paediatr. 1999;88(11): (CLABSI) 1244-1248.
Google Scholar |
Crossref |
Medline8. Costello, JM, Polito, A, Brown, DW, et al. Birth before 39 weeks’ gestation is associated with worse outcomes in neonates with heart disease. Pediatrics. 2010;126(2):277-284.
Google Scholar |
Crossref |
Medline |
ISI9. Costello, JM, Pasquali, SK, Jacobs, JP, et al. Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the society of thoracic surgeons congenital heart surgery database. Circulation. 2014;129(24):2511-2517.
Google Scholar |
Crossref |
Medline10. Cnota, JF, Gupta, R, Michelfelder, EC, Ittenbach, RF. Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks. J Pediatr. 2011;159(5):761-765.
Google Scholar |
Crossref |
Medline |
ISI11. Young, PC, Glasgow, TS, Li, X, Guest-Warnick, G, Stoddard, G. Mortality of late-preterm (near-term) newborns in utah. Pediatrics. 2007;119(3):e659-e665.
Google Scholar |
Crossref |
Medline |
ISI12. Goff, DA, Luan, X, Gerdes, M, et al. Younger gestational age is associated with worse neurodevelopmental outcomes after cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2012;143(3):535-542.
Google Scholar |
Crossref |
Medline13. Calderon, J, Stopp, C, Wypij, D, et al. Early-Term birth in single-ventricle congenital heart disease after the fontan procedure: neurodevelopmental and psychiatric outcomes. J Pediatr. 2016;179: 96-103.
Google Scholar |
Crossref |
Medline |
ISI14. Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, et al. American Heart association adults With congenital heart disease joint committee of the council on cardiovascular disease in the Y, council on clinical cardiology CoCS, anesthesia, council on C and stroke N. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American heart association. Circulation. 2014;129(21):2183-2242.
Google Scholar |
Crossref |
Medline15. Auger, N, Fraser, WD, Healey-Profitos, J, et al. Association between preeclampsia and congenital heart defects. JAMA. 2015;314(15):1588-1598.
Google Scholar |
Crossref |
Medline16. Curzon, CL, Milford-Beland, S, Li, JS, et al. Cardiac surgery in infants with low birth weight is associated with increased mortality: analysis of the society of thoracic surgeons congenital heart database. J Thorac Cardiovasc Surg. 2008;135(3):546-551.
Google Scholar |
Crossref |
Medline |
ISI17. Levy, RJ, Rosenthal, A, Fyler, DC, Nadas, AS. Birthweight of infants with congenital heart disease. Am J Dis Child. 1978;132(3):249-254.
Google Scholar |
Medline18. Malik, S, Cleves, MA, Zhao, W, Correa, A, Hobbs, CA. Association between congenital heart defects and small for gestational age. Pediatrics. 2007;119(4):e976-e982.
Google Scholar |
Crossref |
Medline19. Miller, TA, Ghanayem, NS, Newburger, JW, et al. Pediatric heart network I. Gestational Age, birth weight, and outcomes Six years after the Norwood procedure. Pediatrics. 2019;143(5):e20182577.
Google Scholar |
Crossref20. Matthiesen, NB, Henriksen, TB, Agergaard, P, et al. Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants. Circulation. 2016;134(20):1546-1556.
Google Scholar |
Crossref |
Medline21. Ho, DY, Josowitz, R, Katcoff, H, et al. Mid-gestational fetal placental blood flow is diminished in the fetus with congenital heart disease. Prenat Diagn. 2020;40(11):1432-1438.
Google Scholar |
Crossref |
Medline22. Gaynor, JW, Parry, S, Moldenhauer, JS, et al. The impact of the maternal-foetal environment on outcomes of surgery for congenital heart disease in neonates. Eur J Cardiothorac Surg. 2018;54(2):348-353.
Google Scholar |
Crossref |
Medline23. Steurer, MA, Peyvandi, S, Baer, RJ, et al. Impaired fetal environment and gestational Age: what Is driving mortality in neonates With critical congenital heart disease? J Am Heart Assoc. 2019;8(22):e013194.
Google Scholar |
Crossref |
Medline24. Steurer, MA, Baer, RJ, Burke, E, et al. Effect of fetal growth on 1-year mortality in neonates With critical congenital heart disease. J Am Heart Assoc. 2018;7(17):e009693.
Google Scholar |
Crossref |
Medline25. Steurer, MA, Peyvandi, S, Costello, JM, et al. Association between Z-score for birth weight and postoperative outcomes in neonates and infants with congenital heart disease. Circulation. 2020;142(6):1838-1847 A12360.
Google Scholar26. Lopez, KN, Morris, SA, Sexson Tejtel, SK, Espaillat, A, Salemi, JL. US Mortality attributable to congenital heart disease across the lifespan from 1999 through 2017 exposes persistent racial/ethnic disparities. Circulation. 2020;142(12):1132-1147.
Google Scholar |
Crossref |
Medline27. DiBardino, DJ, Pasquali, SK, Hirsch, JC, et al. Effect of sex and race on outcome in patients undergoing congenital heart surgery: an analysis of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg. 2012;94(6):2054-2059. discussion 2059-60.
Google Scholar |
Crossref |
Medline28. Oster, ME, Strickland, MJ, Mahle, WT. Racial and ethnic disparities in post-operative mortality following congenital heart surgery. J Pediatr. 2011;159(2):222-226.
Google Scholar |
Crossref |
Medline29. Hickey, EJ, Nosikova, Y, Zhang, H, et al. Very low-birth-weight infants with congenital cardiac lesions: is there merit in delaying intervention to permit growth and maturation? J Thorac Cardiovasc Surg. 2012;143(1):126–136 e1.
Google Scholar |
Crossref |
Medline30. Kalfa, D, Krishnamurthy, G, Duchon, J, et al. Outcomes of cardiac surgery in patients weighing <2.5 Kg: effect of patient-dependent and independent variables. J Thorac Cardiovasc Surg. 2014 Dec;148(6):2499-2506.
Google Scholar |
Crossref |
Medline31. Steurer, MA, Baer, RJ, Keller, RL, et al. Gestational age and outcomes in critical congenital heart disease. Pediatrics. 2017;140(4):e20170999.
Google Scholar |
Crossref |
Medline32. Ballabh, P . Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol. 2014;41(1):47-67.
Google Scholar |
Crossref |
Medline33. Schmidt, B, Roberts, RS, Saigal, S, Wright, LL. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001;344(26):1966-1972.
Google Scholar |
Crossref |
Medline34. Fogarty, M, Osborn, DA, Askie, L, et al. Delayed versus early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(1):1-18.
Google Scholar |
Crossref |
Medline35. Licht, DJ, Shera, DM, Clancy, RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137(3):529-536.
Google Scholar |
Crossref |
Medline |
ISI36. Licht, DJ, Wang, J, Silvertre, DW, et al. Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg. 2004;128(6):841-849.
Google Scholar |
Crossref |
Medline37. Ortinau, CM, Anadkat, JS, Smyser, CD, et al. Intraventricular hemorrhage in moderate to severe congenital heart disease. Pediatr Crit Care Med. 2018;19(1):56-63.
Google Scholar |
Crossref |
Medline38. Pappas, A, Shankaran, S, Hansen, NI, et al. Outcomes of extremely low birth weight infants with congenital heart defects in the eunice kennedy shriver NICHD neonatal research network. Pediatr Cardiol. 2012;33(8):1415-1426.
Google Scholar |
Crossref |
Medline39. Axelrod, DM, Chock, VY, Reddy, VM. Management of the preterm infants with congenital heart disease. Clin Perinatol. 2016;43(1):157-171.
Google Scholar |
Crossref |
Medline40. Anderson, A, Smith, P, Corey, K, et al. Clinical outcomes in very low birth weight infants with major congenital heart defects. Early Hum Dev. 2014;90(12):791-795.
Google Scholar |
Crossref |
Medline41. Higgins, RD, Jobe, AH, Koso-Thomas, M, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197: 300-308.
Google Scholar |
Crossref |
Medline42. Jensen, E, Schmidt, B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100(3):145-157.
Google Scholar |
Crossref |
Medline43. Anderson, PJ, Doyle, LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):227-232.
Google Scholar |
Crossref |
Medline44. Trembath, A, Laughon, M. Predictors of bronchopulmonary dysplasia. Clin Perinatol. 2012;39(3):585-601.
Google Scholar |
Crossref |
Medline45. Wright, C, Kirpalani, H. Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics. 2011;128(1):111-126.
Google Scholar |
Crossref |
Medline46. Shahzad, T, Radajewski, S, Chao, C, et al. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr. 2016;3(23):1-8.
Google Scholar |
Medline47. Thomas, W, Speer, CP. Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome? Neonatology. 2011;99(3):177-187.
Google Scholar |
Crossref |
Medline48. Abman, S, Collaco, J, Shepherd, E, et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia. J Pediatr. 2017;181:12-28.e1.
Google Scholar |
Crossref |
Medline49. Ambalavanan, N . Vitamin A supplementation for extremely low birth weight infants: outcome at 18 to 22 months. Pediatrics. 2005;115(3):e249-e254.
Google Scholar |
Crossref |
Medline50. Schmidt, B, Roberts, RS, Davis, P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20)
Comments (0)