Multimodality Imaging of Hepatocellular Carcinoma: From Diagnosis to Treatment Response Assessment in Everyday Clinical Practice

1. Ferenci, P, Fried, M, Labrecque, D, et al. World Gastroenterology Organisation Guideline. Hepatocellular carcinoma (HCC): a global perspective. J Gastrointestin Liver Dis. 2010;19(3):311–317.
Google Scholar | Medline2. Global Burden of Disease Liver Cancer Collaboration , Akinyemiju, T, Abera, S, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017;3(12):1683–1691.
Google Scholar | Crossref | Medline3. Marrero, JA, Kulik, LM, Sirlin, CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723–750.
Google Scholar | Crossref | Medline4. Elsayes, KM, Hooker, JC, Agrons, MM, et al. 2017 version of LI-RADS for CT and MR imaging: an update. Radiographics. 2017;37(7):1994–2017.
Google Scholar | Crossref | Medline5. Kielar, AZ, Chernyak, V, Bashir, MR, et al. LI-RADS 2017: an update. J Magn Reson Imaging. 2018;47(6):1459–1474.
Google Scholar | Crossref | Medline6. Bosch, FX, Ribes, J, Cléries, R, Díaz, M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9(2):191–211, v.
Google Scholar | Crossref | Medline7. Llovet, JM, Burroughs, A, Bruix, J. Hepatocellular carcinoma. Lancet. 2003;362(9399):1907–1917.
Google Scholar | Crossref | Medline8. Wilson, SR, Lyshchik, A, Piscaglia, F, et al. CEUS LI-RADS: algorithm, implementation, and key differences from CT/MRI. Abdom Radiol (NY). 2018;43(1):127–142.
Google Scholar | Crossref | Medline9. Kielar, AZ, Chernyak, V, Bashir, MR, et al. An update for LI-RADS: version 2018. Why so soon after version 2017? J Magn Reson Imaging. 2019;50(6):1990–1991.
Google Scholar | Crossref | Medline10. Santillan, C, Fowler, K, Kono, Y, Chernyak, V. LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents. Abdom Radiol (NY). 2018;43(1):75–81.
Google Scholar | Crossref | Medline11. Kokubo, R, Saito, K, Shirota, N, et al. A case of primary clear cell hepatocellular carcinoma comprised mostly of clear cells. Radiol Case Rep. 2019;14(11):1377–1381.
Google Scholar | Crossref | Medline12. Tang, A, Bashir, MR, Corwin, MT, et al. Evidence supporting LI-RADS major features for CT- and MR imaging-based diagnosis of hepatocellular carcinoma: a systematic review. Radiology. 2018;286(1):29–48.
Google Scholar | Crossref | Medline13. Bruix, J, Sherman, M, American Association for the Study of Liver Diseases . Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–1022.
Google Scholar | Crossref | Medline14. Chernyak, V, Tang, A, Flusberg, M, et al. LI-RADS((R)) ancillary features on CT and MRI. Abdom Radiol (NY). 2018;43(1):82–100.
Google Scholar | Crossref | Medline15. Darnell, A, Forner, A, Rimola, J, et al. Liver Imaging Reporting and Data System with MR imaging: evaluation in nodules 20 mm or smaller detected in cirrhosis at screening US. Radiology. 2015;275(3):698–707.
Google Scholar | Crossref | Medline16. Furlan, A, Marin, D, Agnello, F, et al. Hepatocellular carcinoma presenting at contrast-enhanced multi-detector-row computed tomography or gadolinium-enhanced magnetic resonance imaging as a small (</=2 cm), indeterminate nodule: growth rate and optimal interval time for imaging follow-up. J Comput Assist Tomogr. 2012;36(1):20–25.
Google Scholar | Crossref | Medline17. Miyayama, S, Yamashiro, M, Okuda, M, et al. Detection of corona enhancement of hypervascular hepatocellular carcinoma by C-arm dual-phase cone-beam CT during hepatic arteriography. Cardiovasc Intervent Radiol. 2011;34(1):81–86.
Google Scholar | Crossref | Medline18. Kim, YK, Lee, WJ, Park, MJ, Kim, SH, Rhim, H, Choi, D. Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology. 2012;265(1):104–114.
Google Scholar | Crossref | Medline19. Le Moigne, F, Durieux, M, Bancel, B, et al. Impact of diffusion-weighted MR imaging on the characterization of small hepatocellular carcinoma in the cirrhotic liver. Magn Reson Imaging. 2012;30(5):656–665.
Google Scholar | Crossref | Medline20. Rhee, H, Kim, MJ, Park, YN, Choi, JS, Kim, KS. Gadoxetic acid-enhanced MRI findings of early hepatocellular carcinoma as defined by new histologic criteria. J Magn Reson Imaging. 2012;35(2):393–398.
Google Scholar | Crossref | Medline21. Choi, SH, Byun, JH, Lim, YS, et al. Diagnostic criteria for hepatocellular carcinoma 3 cm with hepatocyte-specific contrast-enhanced magnetic resonance imaging. J Hepatol. 2016;64(5):1099–1107.
Google Scholar | Crossref | Medline22. Cruite, I, Schroeder, M, Merkle, EM, Sirlin, CB. Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol. 2010;195(1):29–41.
Google Scholar | Crossref | Medline23. Dioguardi Burgio, M, Picone, D, Cabibbo, G, Midiri, M, Lagalla, R, Brancatelli G.MR-imaging features of hepatocellular carcinoma capsule appearance in cirrhotic liver: comparison of gadoxetic acid and gadobenate dimeglumine. Abdom Radiol (NY). 2016;41(8):1546–1554.
Google Scholar | Crossref | Medline24. Suh, YJ, Kim, MJ, Choi, JY, Park, YN, Park, MS, Kim, KW. Differentiation of hepatic hyperintense lesions seen on gadoxetic acid-enhanced hepatobiliary phase MRI. AJR Am J Roentgenol. 2011;197(1):W44–W52.
Google Scholar | Crossref | Medline25. Yoshida, T, Matsue, H, Okazaki, N, Yoshino, M. Ultrasonographic differentiation of hepatocellular carcinoma from metastatic liver cancer. J Clin Ultrasound. 1987;15(7):431–437.
Google Scholar | Crossref | Medline26. Kutami, R, Nakashima, Y, Nakashima, O, Shiota, K, Kojiro, M. Pathomorphologic study on the mechanism of fatty change in small hepatocellular carcinoma of humans. J Hepatol. 2000;33(2):282–289.
Google Scholar | Crossref | Medline27. Hope, TA, Fowler, KJ, Sirlin, CB, et al. Hepatobiliary agents and their role in LI-RADS. Abdom Imaging. 2015;40(3):613–625.
Google Scholar | Crossref | Medline28. Kozaka, K, Kobayashi, S, Yoneda, N, et al. Doughnut-like hyperintense nodules on hepatobiliary phase without arterial-phase hyperenhancement in cirrhotic liver: imaging and clinicopathological features. Eur Radiol. 2019;29(12):6489–6498.
Google Scholar | Crossref | Medline29. Yoneda, N, Matsui, O, Kitao, A, et al. Benign hepatocellular nodules: hepatobiliary phase of gadoxetic acid-enhanced MR imaging based on molecular background. Radiographics. 2016;36(7):2010–2027.
Google Scholar | Crossref | Medline30. Doo, KW, Lee, CH, Choi, JW, Lee, J, Kim, KA, Park, CM. “Pseudo washout” sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. AJR Am J Roentgenol. 2009;193(6):W490–W496.
Google Scholar | Crossref | Medline31. Chong, YS, Kim, YK, Lee, MW, et al. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI. Clin Radiol 2012;67(8):766–773.
Google Scholar | Crossref | Medline32. Kim, R, Lee, JM, Shin, CI, et al. Differentiation of intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma on gadoxetic acid-enhanced liver MR imaging. Eur Radiol. 2016;26(6):1808–1817.
Google Scholar | Crossref | Medline33. Bolondi, L . Screening for hepatocellular carcinoma in cirrhosis. J Hepatol. 2003;39(6):1076–1084.
Google Scholar | Crossref | Medline34. Gambarin-Gelwan, M, Wolf, DC, Shapiro, R, Schwartz, ME, Min, AD. Sensitivity of commonly available screening tests in detecting hepatocellular carcinoma in cirrhotic patients undergoing liver transplantation. Am J Gastroenterol. 2000;95(6):1535–1538.
Google Scholar | Crossref | Medline35. Son, JH, Choi, SH, Kim, SY, et al., Validation of US Liver Imaging Reporting and Data System version 2017 in patients at high risk for hepatocellular carcinoma. Radiology. 2019;292(2):390–397.
Google Scholar | Crossref | Medline36. Rodgers, SK, Fetzer, DT, Gabriel, H, et al. Role of US LI-RADS in the LI-RADS algorithm. Radiographics. 2019;39(3):690–708.
Google Scholar | Crossref | Medline37. Terrault, NA, Lok, ASF, McMahon, BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 Hepatitis B guidance. Hepatology. 2018;67(4):1560–1599.
Google Scholar | Crossref | Medline38. Morgan, TA, Maturen, KE, Dahiya, N, et al. US LI-RADS: Ultrasound Liver Imaging Reporting and Data System for screening and surveillance of hepatocellular carcinoma. Abdom Radiol (NY). 2018;43(1):41–55.
Google Scholar | Crossref | Medline39. Jang, HJ, Kim, TK, Burns, PN, Wilson, SR. Enhancement patterns of hepatocellular carcinoma at contrast-enhanced US: comparison with histologic differentiation. Radiology. 2007;244(3):898–906.
Google Scholar | Crossref | Medline40. Kielar, A, Fowler, KJ, Lewis, S, et al., Locoregional therapies for hepatocellular carcinoma and the new LI-RADS treatment response algorithm. Abdom Radiol (NY). 2018;43(1):218–230.
Google Scholar | Crossref | Medline41. Chung, WS, Lee, KH, Park, MS, et al. Enhancement patterns of hepatocellular carcinoma after transarterial chemoembolization using drug-eluting beads on arterial phase CT images: a pilot retrospective study. AJR Am J Roentgenol. 2012;199(2):349–359.
Google Scholar | Crossref | Medline42. Ehman, EC, Umetsu, SE, Ohliger, MA, et al. Imaging prediction of residual hepatocellular carcinoma after locoregional therapy in patients undergoing liver transplantation or partial hepatectomy. Abdom Radiol (NY). 2016;41(11):2161–2168.
Google Scholar | Crossref | Medline43. Kallini, JR, iller, FH, Gabr, A, Salem, R, Lewandowski, RJ. Hepatic imaging following intra-arterial embolotherapy. Abdom Radiol (NY). 2016;41(4):600–616.
Google Scholar | Crossref | Medline44. Merkle, EM, Zech, CJ, Bartolozzi, C, et al. Consensus report from the 7th International Forum for Liver Magnetic Resonance Imaging. Eur Radiol. 2016;26(3):674–682.
Google Scholar | Crossref | Medline45. Shinagawa, Y, Sakamoto, K, Fujimitsu, R, et al. Pseudolesion of the liver observed on gadoxetate disodium-enhanced magnetic resonance imaging obtained shortly after transarterial chemoembolization for hepatocellular carcinoma. Jpn J Radiol. 2010;28(6):483–488.
Google Scholar | Crossref | Medline46. Watanabe, H, Kanematsu, M, Goshima, S, et al. Is gadoxetate disodium-enhanced MRI useful for detecting local recurrence of hepatocellular carcinoma after radiofrequency ablation therapy? AJR Am J Roentgenol. 2012;198(3):589–595.
Google Scholar | Crossref | Medline47. Tsuda, M, Majima, K, Yamada, T, Saitou, H, Ishibashi, T, Takahashi, S. Hepatocellular carcinoma after radiofrequency ablation therapy: dynamic CT evaluation of treatment. Clin Imaging. 2001;25(6):409–415.
Google Scholar | Crossref | Medline48. Schima, W, Ba-Ssalamah, A, Kurtaran, A, Schindl, M, Gruenbergerc, T. Post-treatment imaging of liver tumours. Cancer Imaging. 2007;7(spec no A):S28–S36.
Google Scholar |

Comments (0)

No login
gif