Congenital Hypothyroidism Patients With Thyroid Hormone Receptor Variants Are Not Rare: A Systematic Review

1. Mio, C, Grani, G, Durante, C, Damante, G. Molecular defects in thyroid dysgenesis. Clin Genet. 2020;97(1):222-231. doi:10.1111/cge.13627.
Google Scholar | Crossref | Medline2. Fang, Y, Sun, F, Zhang, R-J, et al. Mutation screening of the TSHR gene in 220 Chinese patients with congenital hypothyroidism. Clin Chim Acta. 2019;497:147-152. doi:10.1016/j.cca.2019.07.031.
Google Scholar | Crossref | Medline3. Targovnik, HM, Scheps, KG, Rivolta, CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol. 2020;501:110638. doi:10.1016/j.mce.2019.110638.
Google Scholar | Crossref | Medline4. Grasberger, H, Refetoff, S. Resistance to thyrotropin. Best Pract Res Clin Endocrinol Metabol. 2017;31(2):183-194. doi:10.1016/j.beem.2017.03.004.
Google Scholar | Crossref | Medline5. Moher, D, Liberati, A, Tetzlaff, J, Altman, DG, The, PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
Google Scholar | Crossref | Medline | ISI6. Huang, M, Lu, X, Dong, G, et al. Analysis of mutation spectra of 28 pathogenic genes associated with congenital hypothyroidism in the chinese han population. Front Endocrinol. 2021;12:695426. doi:10.3389/fendo.2021.695426.
Google Scholar | Crossref | Medline7. Wang, H, Kong, X, Pei, Y, et al. Mutation spectrum analysis of 29 causative genes in 43 Chinese patients with congenital hypothyroidism. Mol Med Rep. 2020;22(1):297-309. doi:10.3892/mmr.2020.11078.
Google Scholar | Crossref | Medline8. Long, W, Lu, G, Zhou, W, et al. Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocr J. 2018;65(10):1019-1028. doi:10.1507/endocrj.EJ18-0156.
Google Scholar | Crossref | Medline9. Wang, F, Liu, C, Jia, X, et al. Next-generation sequencing of NKX2.1 , FOXE1 , PAX8 , NKX2.5 , and TSHR in 100 Chinese patients with congenital hypothyroidism and athyreosis. Clin Chim Acta. 2017;470:36-41. doi:10.1016/j.cca.2017.04.020.
Google Scholar | Crossref | Medline10. Fan, X, Fu, C, Shen, Y, et al. Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism. Clin Chim Acta. 2017;468:76-80. doi:10.1016/j.cca.2017.02.009.
Google Scholar | Crossref | Medline11. Li, L, Zhang, WH, Zang, YC, Yan, SL, Kong, B, Liu, SG. Identification of a novel TSHR mutation from a Chinese baby with congenital hypothyroidism due to ectopy. Article. Int J Clin Exp Pathol. 2016;9(1):153-158.
Google Scholar12. Qiu, Y-L, Ma, S-G, Liu, H, Yue, H-N. Two novel TSHR gene mutations (p.R528C and c.392+4del4) associated with congenital hypothyroidism. Endocr Res. 2016;41(3):180-184. doi:10.3109/07435800.2015.1124438.
Google Scholar | Crossref | Medline13. Fu, C, Wang, J, Luo, S, et al. Next-generation sequencing analysis of TSHR in 384 Chinese subclinical congenital hypothyroidism (CH) and CH patients. Clin Chim Acta. 2016;462:127-132. doi:10.1016/j.cca.2016.09.007.
Google Scholar | Crossref | Medline14. Chang, W-C, Liao, C-Y, Chen, W-C, et al. R450H TSH receptor mutation in congenital hypothyroidism in Taiwanese children. Clin Chim Acta. 2012;413(11-12):1004-1007. doi:10.1016/j.cca.2012.02.027.
Google Scholar | Crossref | Medline15. Ma, S-g., Fang, P-h., Hong, B, Yu, W-n. The R450H mutation and D727E polymorphism of the thyrotropin receptor gene in a Chinese child with congenital hypothyroidism. J Pediatr Endocrinol Metab. 2010;23(12):1339-1344. doi:10.1515/jpem.2010.209.
Google Scholar | Crossref | Medline16. Yuan, ZF, Mao, HQ, Luo, YF, Wu, YD, Shen, Z, Zhao, ZY. Thyrotropin receptor and thyroid transcription factor-1 genes variant in Chinese children with congenital hypothyroidism. Endocr J. 2008;55(2):415-423. doi:10.1507/endocrj.k07e-064.
Google Scholar | Crossref | Medline17. Shin, JH, Kim, HY, Kim, YM, et al. Genetic evaluation of congenital hypothyroidism with gland in situ using targeted exome sequencing. Ann Clin Lab Sci. 2021;51(1):73-81.
Google Scholar | Medline18. Park, K-J, Park, H-K, Kim, Y-J, et al. DUOX2 Mutations Are Frequently Associated With Congenital Hypothyroidism in the Korean Population. Annals of Laboratory Medicine. 2016;36(2):145-153. doi:10.3343/alm.2016.36.2.145.
Google Scholar | Crossref | Medline19. Jin, HY, Heo, S-H, Kim, Y-M, et al. High Frequency of DUOX2 Mutations in Transient or Permanent Congenital Hypothyroidism with Eutopic Thyroid Glands. Hormone Research in Paediatrics. 2014;82(4):252-260. doi:10.1159/000362235.
Google Scholar | Crossref | Medline20. Lee, S-T, Lee, DH, Kim, J-Y, et al. Molecular screening of the TSH receptor (TSHR) and thyroid peroxidase (TPO) genes in Korean patients with nonsyndromic congenital hypothyroidism. Clin Endocrinol. 2011;75(5):715-721. doi:10.1111/j.1365-2265.2011.04156.x.
Google Scholar | Crossref | Medline21. Watanabe, D, Yagasaki, H, Narusawa, H, et al. Screening of frequent variants associated with congenital hypothyroidism: a comparison with next generation sequencing. Endocr J 2021;Epub ahead of print. doi:10.1507/endocrj.EJ21-0353.
Google Scholar | Crossref22. Tanaka, T, Aoyama, K, Suzuki, A, Saitoh, S, Mizuno, H. Clinical and genetic investigation of 136 Japanese patients with congenital hypothyroidism. J Pediatr Endocrinol Metab. 2020;33(6):691-701. doi:10.1515/jpem-2019-0433.
Google Scholar | Crossref | Medline23. Abe, K, Narumi, S, Suwanai, AS, et al. Association between monoallelic TSHR mutations and congenital hypothyroidism: a statistical approach. Eur J Endocrinol. 2018;178(2):137-144. doi:10.1530/eje-16-1049.
Google Scholar | Crossref | Medline24. Narumi, S, Nagasaki, K, Ishii, T, et al. Nonclassic TSH Resistance:TSHRMutation carriers with discrepantly high thyroidal iodine uptake. J Clin Endocrinol Metab. 2011;96(8):E1340-E1345. doi:10.1210/jc.2011-0070.
Google Scholar | Crossref | Medline25. Narumi, S, Muroya, K, Abe, Y, et al. TSHRMutations as a Cause of Congenital Hypothyroidism in Japan: A Population-Based Genetic Epidemiology Study. J Clin Endocrinol Metab. 2009;94(4):1317-1323. doi:10.1210/jc.2008-1767.
Google Scholar | Crossref | Medline26. Cangul, H, Aycan, Z, Saglam, H, et al. TSHR is the main causative locus in autosomal recessively inherited thyroid dysgenesis. J Pediatr Endocrinol Metab. 2012;25(5-6):419-426. doi:10.1515/jpem-2012-0053.
Google Scholar | Crossref | Medline27. Zou, M, Alzahrani, AS, Al-Odaib, A, et al. Molecular analysis of congenital hypothyroidism in Saudi Arabia: SLC26A7 Mutation Is a Novel Defect in Thyroid Dyshormonogenesis. J Clin Endocrinol Metab. 2018;103(5):1889-1898. doi:10.1210/jc.2017-02202.
Google Scholar | Crossref | Medline28. Deeb, A, Elkadry, I, Attia, S, Al Suwaidi, H, Obaid, L, Schoenmakers, NA. Biochemical, radiological, and genetic characterization of congenital hypothyroidism in Abu Dhabi, United Arab Emirates. J Pediatr Endocrinol Metab. 2016;29(7):801-806. doi:10.1515/jpem-2015-0275.
Google Scholar | Crossref | Medline29. Tenenbaum-Rakover, Y, Almashanu, S, Hess, O, et al. Long-term outcome of loss-of-function mutations in thyrotropin receptor gene. Thyroid. 2015;25(3):292-299. doi:10.1089/thy.2014.0311.
Google Scholar | Crossref | Medline30. Vigone, MC, Di Frenna, M, Guizzardi, F, et al. Mild TSH resistance: Clinical and hormonal features in childhood and adulthood. Clin Endocrinol. 2017;87(5):587-596. doi:10.1111/cen.13387.
Google Scholar | Crossref | Medline31. Vincenzi, M, Camilot, M, Ferrarini, E, et al. Identification of a novel pax8 gene sequence variant in four members of the same family: from congenital hypothyroidism with thyroid hypoplasia to mild subclinical hypothyroidism. BMC Endocr Disord. 2014;14:69. doi:10.1186/1472-6823-14-69.
Google Scholar | Crossref | Medline32. Camilot, M, Teofoli, F, Vincenzi, M, Federici, F, Perlini, S, Tatò, L. Implementation of a congenital hypothyroidism newborn screening procedure with mutation detection on genomic DNA extracted from blood spots: the experience of the Italian northeastern reference center. Genet Test. 2007;11(4):387-390. doi:10.1089/gte.2007.0033.
Google Scholar | Crossref | Medline33. Camilot, M, Teofoli, F, Gandini, A, et al. Thyrotropin receptor gene mutations and TSH resistance: variable expressivity in the heterozygotes. Clin Endocrinol. 2005;63(2):146-151. doi:10.1111/j.1365-2265.2005.02314.x.
Google Scholar | Crossref | Medline34. Calaciura, F, Miscio, G, Coco, A, et al. Genetics of specific phenotypes of congenital hypothyroidism: a population-based approach. Thyroid. 2002;12(11):945-951. doi:10.1089/105072502320908277.
Google Scholar | Crossref | Medline35. Löf, C, Patyra, K, Kuulasmaa, T, et al. Detection of novel gene variants associated with congenital hypothyroidism in a finnish patient cohort. Thyroid. 2016;26(9):1215-1224. doi:10.1089/thy.2016.0016.
Google Scholar | Crossref | Medline36. Kumorowicz-Czoch, M, Madetko-Talowska, A, Tylek-Lemanska, D, Pietrzyk, JJ, Starzyk, J. Identification of deletions in children with congenital hypothyroidism and thyroid dysgenesis with the use of multiplex ligation-dependent probe amplification. J Pediatr Endocrinol Metab. 2015;28(1-2):171-176. doi:10.1515/jpem-2014-0040.
Google Scholar | Crossref | Medline37. Jeziorowska, A, Pniewska-Siark, B, Brzeziańska, E, Pastuszak-Lewandoska, D, Lewiński, A. A novel mutation in the thyrotropin (thyroid-stimulating hormone) receptor gene in a case of congenital hypothyroidism. Thyroid. 2006;16(12):1303-1309. doi:10.1089/thy.2006.16.1303.
Google Scholar | Crossref | Medline38. Lábadi, Á, Grassi, ES, Gellén, B, et al. Loss-of-function variants in a hungarian cohort reveal structural insights on TSH receptor maturation and signaling. J Clin Endocrinol Metab. 2015;100(7):E1039-E1045. doi:10.1210/jc.2014-4511.
Google Scholar | Crossref | Medline39. Cerqueira, TLO, Carré, A, Chevrier, L, et al. Functional characterization of the novel sequence variant p.S304R in the hinge region of TSHR in a congenital hypothyroidism patients and analogy with other formerly known mutations of this gene portion. J Pediatr Endocrinol Metab. 2015;28(7-8):777-784. doi:10.1515/jpem-2014-0194.
Google Scholar | Crossref | Medline40. Krude, H, Biebermann, H, Göpel, W, Grüters, A. The gene for the thyrotropin receptor (TSHR) as a candidate gene for congenital hypothyroidism with thyroid dysgenesis. Exp Clin Endocrinol Diabetes. 1996;104(suppl 4):117-120. doi:10.1055/s-0029-1211717.
Google Scholar | Crossref | Medline41. Makretskaya, N, Bezlepkina, O, Kolodkina, A, et al. High frequency of mutations in 'dyshormonogenesis genes' in severe congenital hypothyroidism. PLoS One. 2018;13(9):e0204323. doi:10.1371/journal.pone.0204323.
Google Scholar | Crossref | Medline42. Alcántara-Ortigoza, MA, Sánchez-Verdiguel, I, Fernández-Hernández, L, et al. Further evidence that defects in main thyroid dysgenesis-related genes are an uncommon etiology for primary congenital hypothyroidism in mexican patients: report of rare variants in FOXE1, NKX2-5 and TSHR. Children. 2021;8(6):457. doi:10.3390/children8060457.
Google Scholar | Crossref | Medline43. Cortinhas Alves, EA, Andrade, RC, de Melo Amaral, CE, Fernandes Caldato, MC, Rocha Bastos, AM, da Silva, LCS. Evaluation of the tshr gene reveals polymorphisms associated with typical symptoms in primary congenital hypothyroidism. J Pediatr Endocrinol Metab. 2016;29(1):71-76. doi:10.1515/jpem-2015-0130.
Google Scholar |

Comments (0)

No login
gif