Retrospective analysis of the emergence of antibiotic-resistant Salmonella enterica infections in a level IV hospital from Lima, Peru

1. Cabrera, R, Ruiz, J, Marco, F, et al. Mechanism of resistance to several antimicrobial agents in Salmonella clinical isolates causing of traveler's diarrhea. Antimicrob Agents Chemother 2004; 48: 3934–3939.
Google Scholar | Crossref | Medline2. Crump, JA, Sjölund-Karlsson, M, Gordon, MA, et al. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015; 28: 901–937.
Google Scholar | Crossref | Medline | ISI3. Mandomando, IM, Bassat, Q, Sigauque, B, et al. Invasive Salmonella infections among children from rural Mozambique, 2001–2014. Clin Infect Dis. 2015; 61: S339–S345.
Google Scholar | Crossref | Medline4. Qureshi, S, Naveed, AB, Yousafzai, MT, et al. Response of extensively drug resistant Salmonella typhi to treatment with meropenem and azithromycin, in Pakistan. PLoS Negl Trop Dis 2020; 14: e0008682.
Google Scholar | Crossref | Medline5. O’Regan, E, Quinn, T, Frye, JG, et al. Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob Agents Chemother 2010; 54: 367–374.
Google Scholar | Crossref | Medline6. de Toro, M, Rojo-Bezares, B, Vinué, L, et al. In vivo selection of aac(6’)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J Antimicrob Chemother 2010; 65: 1945–1949.
Google Scholar | Crossref | Medline7. Dong, N, Li, Y, Zhao, J, et al. The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan province, China. BMC Infect Dis 2020; 20: 511.
Google Scholar | Crossref | Medline8. Hawkey, J, Le Hello, S, Doublet, B, et al. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microb Genom 2019; 5: e000269.
Google Scholar9. Granda, A, Riveros, M, Martínez-Puchol, S, et al. Presence of extended-spectrum β-lactamase, CTX-M-65, in Salmonella enterica serovar Infantis isolated from children with diarrhea in Lima, Peru. J Pediatr Infect Dis. 2019; 14: 194–200.
Google Scholar | Crossref10. Maguiña-Molina, C, Pons, MJ, Beltran, M, et al. Multidrug-resistant Salmonella enterica isolated in paca (Cuniculus paca) carcasses from the belen market, iquitos - Peru. Foodborne Pathog Dis 2021; 18: 131–138.
Google Scholar | Crossref | Medline11. Martinez-Puchol, S, Riveros, M, Ruidias, K, et al. Dissemination of a multidrug resistant CTX-M-65 producer Salmonella enterica serovar Infantis clone between marketed chicken meat and children. Int J Food Microbiol 2021; 344: 109109.
Google Scholar | Crossref | Medline12. Nadimpalli, M, Fabre, L, Yith, V, et al. CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia. J Antimicrob Chemother 2019; 74: 342–348.
Google Scholar | Crossref | Medline13. Pérez-Moreno, MO, Picó-Plana, E, de Toro, M, et al. β-Lactamases, transferable quinolone resistance determinants, and class 1 integron-mediated antimicrobial resistance in human clinical Salmonella enterica isolates of non-Typhimurium serotypes. Int J Med Microbiol 2013; 303: 25–31.
Google Scholar | Crossref | Medline14. Quino, W, Hurtado, CV, Escalante-Maldonado, O, et al. Multidrogorresistencia de Salmonella Infantis en Perú: un estudio mediante secuenciamiento de nueva generación. Rev Peru Med Exp Salud Publica 2019; 36: 37–45.
Google Scholar | Crossref | Medline15. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2009.
Google Scholar16. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2010.
Google Scholar17. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2012.
Google Scholar18. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2013.
Google Scholar19. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2014.
Google Scholar20. Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268–281.
Google Scholar | Crossref | Medline | ISI21. Horna, G, Amaro, C, Palacios, A, et al. High frequency of the exoU + /exoS + genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9: 10874.
Google Scholar | Crossref | Medline22. Gonzales-Escalante, E . Incremento de aislamientos de Salmonella spp. productora de β-lactamasas de espectro extendido en pacientes pediátricos del Instituto Nacional de Salud del Niño. Rev Peru Med Exp Salud Publica 2015; 32: 605–607.
Google Scholar | Crossref | Medline23. Cartelle Gestal, M, Zurita, J, Paz y Mino, A, et al. Characterization of a small outbreak of Salmonella enterica serovar Infantis that harbour CTX-M-65 in Ecuador. Braz J Infect Dis 2016; 20: 406–407.
Google Scholar | Crossref | Medline24. Lapierre, L, Cornejo, J, Zavala, S, et al. Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: first findings in Chile. Animals (Basel) 2020; 10: 1049.
Google Scholar | Crossref25. Blahová, J, Lesická-Hupková, M, Králiková, K, et al. ended-spectrum β-lactamase-producing Salmonella enteritidis. J Chemother 1998; 10: 291–294.
Google Scholar | Crossref | Medline26. Coipan, CE, Westrell, T, van Hoek, AHAM, et al. Genomic epidemiology of emerging ESBL-producing Salmonella Kentucky blaCTX−M−14b in Europe. Emerg Microbes Infect 2020; 9: 2124–2135.
Google Scholar | Crossref | Medline27. Hindermann, D, Gopinath, G, Chase, H, et al. Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front Microbiol. 2017; 8: 1322.
Google Scholar | Crossref | Medline28. Tyson, GH, Li, C, Harrison, LB, et al. A multidrug-resistant Salmonella Infantis clone is spreading and recombining in the United States. Microb Drug Resist 2021; 27: 792–799. https://doi.org/10.1089/mdr2020.0389.
Google Scholar29. García, C, Lejon, V, Horna, G, et al. Intermediate susceptibility to ciprofloxacin among Salmonella enterica serovar Typhi isolates in Lima, Peru. J Clin Microbiol 2014; 52: 968–970.
Google Scholar | Crossref | Medline30. Martínez-Puchol, S, Gomes, C, Pons, MJ, et al. Development and analysis of furazolidone-resistant Escherichia coli mutants. APMIS 2015; 123: 676–681.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif