1. Cabrera, R, Ruiz, J, Marco, F, et al. Mechanism of resistance to several antimicrobial agents in Salmonella clinical isolates causing of traveler's diarrhea. Antimicrob Agents Chemother 2004; 48: 3934–3939.
Google Scholar |
Crossref |
Medline2. Crump, JA, Sjölund-Karlsson, M, Gordon, MA, et al. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015; 28: 901–937.
Google Scholar |
Crossref |
Medline |
ISI3. Mandomando, IM, Bassat, Q, Sigauque, B, et al. Invasive Salmonella infections among children from rural Mozambique, 2001–2014. Clin Infect Dis. 2015; 61: S339–S345.
Google Scholar |
Crossref |
Medline4. Qureshi, S, Naveed, AB, Yousafzai, MT, et al. Response of extensively drug resistant Salmonella typhi to treatment with meropenem and azithromycin, in Pakistan. PLoS Negl Trop Dis 2020; 14: e0008682.
Google Scholar |
Crossref |
Medline5. O’Regan, E, Quinn, T, Frye, JG, et al. Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob Agents Chemother 2010; 54: 367–374.
Google Scholar |
Crossref |
Medline6. de Toro, M, Rojo-Bezares, B, Vinué, L, et al. In vivo selection of aac(6’)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J Antimicrob Chemother 2010; 65: 1945–1949.
Google Scholar |
Crossref |
Medline7. Dong, N, Li, Y, Zhao, J, et al. The phenotypic and molecular characteristics of antimicrobial resistance of Salmonella enterica subsp. enterica serovar Typhimurium in Henan province, China. BMC Infect Dis 2020; 20: 511.
Google Scholar |
Crossref |
Medline8. Hawkey, J, Le Hello, S, Doublet, B, et al. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microb Genom 2019; 5: e000269.
Google Scholar9. Granda, A, Riveros, M, Martínez-Puchol, S, et al. Presence of extended-spectrum β-lactamase, CTX-M-65, in Salmonella enterica serovar Infantis isolated from children with diarrhea in Lima, Peru. J Pediatr Infect Dis. 2019; 14: 194–200.
Google Scholar |
Crossref10. Maguiña-Molina, C, Pons, MJ, Beltran, M, et al. Multidrug-resistant Salmonella enterica isolated in paca (Cuniculus paca) carcasses from the belen market, iquitos - Peru. Foodborne Pathog Dis 2021; 18: 131–138.
Google Scholar |
Crossref |
Medline11. Martinez-Puchol, S, Riveros, M, Ruidias, K, et al. Dissemination of a multidrug resistant CTX-M-65 producer Salmonella enterica serovar Infantis clone between marketed chicken meat and children. Int J Food Microbiol 2021; 344: 109109.
Google Scholar |
Crossref |
Medline12. Nadimpalli, M, Fabre, L, Yith, V, et al. CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia. J Antimicrob Chemother 2019; 74: 342–348.
Google Scholar |
Crossref |
Medline13. Pérez-Moreno, MO, Picó-Plana, E, de Toro, M, et al. β-Lactamases, transferable quinolone resistance determinants, and class 1 integron-mediated antimicrobial resistance in human clinical Salmonella enterica isolates of non-Typhimurium serotypes. Int J Med Microbiol 2013; 303: 25–31.
Google Scholar |
Crossref |
Medline14. Quino, W, Hurtado, CV, Escalante-Maldonado, O, et al. Multidrogorresistencia de Salmonella Infantis en Perú: un estudio mediante secuenciamiento de nueva generación. Rev Peru Med Exp Salud Publica 2019; 36: 37–45.
Google Scholar |
Crossref |
Medline15. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2009.
Google Scholar16. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2010.
Google Scholar17. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2012.
Google Scholar18. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2013.
Google Scholar19. Clinical and Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing. Document M100 - S19. Wayne: CLSI, 2014.
Google Scholar20. Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268–281.
Google Scholar |
Crossref |
Medline |
ISI21. Horna, G, Amaro, C, Palacios, A, et al. High frequency of the exoU + /exoS + genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9: 10874.
Google Scholar |
Crossref |
Medline22. Gonzales-Escalante, E . Incremento de aislamientos de Salmonella spp. productora de β-lactamasas de espectro extendido en pacientes pediátricos del Instituto Nacional de Salud del Niño. Rev Peru Med Exp Salud Publica 2015; 32: 605–607.
Google Scholar |
Crossref |
Medline23. Cartelle Gestal, M, Zurita, J, Paz y Mino, A, et al. Characterization of a small outbreak of Salmonella enterica serovar Infantis that harbour CTX-M-65 in Ecuador. Braz J Infect Dis 2016; 20: 406–407.
Google Scholar |
Crossref |
Medline24. Lapierre, L, Cornejo, J, Zavala, S, et al. Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: first findings in Chile. Animals (Basel) 2020; 10: 1049.
Google Scholar |
Crossref25. Blahová, J, Lesická-Hupková, M, Králiková, K, et al. ended-spectrum β-lactamase-producing Salmonella enteritidis. J Chemother 1998; 10: 291–294.
Google Scholar |
Crossref |
Medline26. Coipan, CE, Westrell, T, van Hoek, AHAM, et al. Genomic epidemiology of emerging ESBL-producing Salmonella Kentucky blaCTX−M−14b in Europe. Emerg Microbes Infect 2020; 9: 2124–2135.
Google Scholar |
Crossref |
Medline27. Hindermann, D, Gopinath, G, Chase, H, et al. Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010–2015: poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front Microbiol. 2017; 8: 1322.
Google Scholar |
Crossref |
Medline28. Tyson, GH, Li, C, Harrison, LB, et al. A multidrug-resistant Salmonella Infantis clone is spreading and recombining in the United States. Microb Drug Resist 2021; 27: 792–799.
https://doi.org/10.1089/mdr2020.0389.
Google Scholar29. García, C, Lejon, V, Horna, G, et al. Intermediate susceptibility to ciprofloxacin among Salmonella enterica serovar Typhi isolates in Lima, Peru. J Clin Microbiol 2014; 52: 968–970.
Google Scholar |
Crossref |
Medline30. Martínez-Puchol, S, Gomes, C, Pons, MJ, et al. Development and analysis of furazolidone-resistant Escherichia coli mutants. APMIS 2015; 123: 676–681.
Google Scholar |
Crossref |
Medline
Comments (0)