A Universal Delayed Difference Model Fitting Dose-response Curves

1. Nweke, CO, Ogbonna, CJ. Statistical models for biphasic dose-response relationships (hormesis) in toxicological studies. Ecotoxicol Environ Contam. 2017;12(1):39-55.
Google Scholar2. Calabrese, EJ, Baldwin, LA. HORMESIS: the dose-response revolution. Annu Rev Pharmacol Toxicol. 2003;43:175-197.
Google Scholar | Crossref | Medline | ISI3. Calabrese, EJ, Baldwin, LA. Hormesis: U-shaped dose response and their centerality in toxicology. Trends Pharmacol Sci. 2001;22(6):285-291.
Google Scholar | Crossref | Medline | ISI4. Qi, HY, Han, YF, Rong, JH. Potential roles of PI3K/Akt and Nrf2eKeap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation. Neuropharmacology. 2012;62(4):1659-1670.
Google Scholar | Crossref | Medline5. Yang, Y, Dou, G, Yu, Z, et al. Z-Ligustilide exerted hormetic effect on growth and detoxification enzymes of Spodoptera litura larvae. Evid Based Complementary Altern Med. 2018;2018(2):1-10.
Google Scholar6. Wang, CQ, He, H, Liu, G, et al. DT-13 induced apoptosis and promoted differentiation of acute myeloid leukemia cells by activating AMPK-KLF2 pathway. Pharmacol Res. 2020;158:104864.
Google Scholar | Crossref | Medline7. Linares, JF, Gustafsson, I, Baquero, F, Martinez, JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc National Acad Sci USA (PNAS). 2006;103(51):19484-19489.
Google Scholar | Crossref | Medline | ISI8. Migliore, L, Godeas, F, De Filippis, SP, et al. Hormetic effect(s) of tetracyclines as environmental contaminant on Zea mays. Environ Pollut. 2010;158(1):129-134.
Google Scholar | Crossref | Medline | ISI9. Migliore, L, Rotini, A, Thaller, MC. Low doses of tetracycline trigger the E.coli growth: a case of hormetic response. Dose-Response. 2013;11(4):550-557.
Google Scholar | SAGE Journals10. Wang, ZJ, Liu, SS, Qu, R. JSFit: a method for the fitting and prediction of J- and S-shaped concentration-response curves. RSC Adv. 2018;8(12):6572-6580.
Google Scholar | Crossref11. Calabrese, EJ, Blain, RB. Hormesis and plant biology. Environ Pollut. 2009;157:42-48.
Google Scholar | Crossref | Medline | ISI12. Welch, H, Price, CW, Randall, WA. Increase in fatality rate of E. typhosa for white mice by streptomycin. Am Pharm Assoc. 1946;35:155-158.
Google Scholar | Crossref13. Guedes, NMP, Tolledo, J, Corrěa, AS, Guedes, RNC. Insecticide-induced hormesis in an insecticide resistant strain of the maize weevil, Sitophilus zeamais. Appl Entomol. 2010;134:142-148.
Google Scholar | Crossref | ISI14. Cutler, Christopher, G. Insects, insecticides and hormesis: evidence and considerations for study. Dose-Response. 2013;11(2):154-177.
Google Scholar | SAGE Journals15. Guedes, RNC, Cutler, GC. Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci. 2014;70:690-697.
Google Scholar | Crossref | Medline16. Dragićević, M, Platiša, J, Nikolić, R, Todorović, S, Simonović, A. Herbicide phosphinothricin causes direct stimulation hormesis. Dose-Response. 2013;11(3):344-360.
Google Scholar | SAGE Journals17. Abbas, T, Nadeem, MA, Tanveer, A, Zohaib, A, Rasool, T. Glyphosate hormesis increases growth and yield of chickpea (Cicer arietinum L.). Pak J Weed Sci Res. 2015;21:533-542.
Google Scholar18. Abbas, T, Nadeem, MA, Tanveer, A, Zohaib, A, Rasool, T. Lux-biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols. FEMS Microbiol Letters. 1999;174:273-278.
Google Scholar | Crossref | Medline19. Zaki, S, Abd-El-Haleem, D, Abulhamd, A, Elbery, H, Abuelreesh, G. Influence of phenolics on the sensitivity of free and immobilized bioluminescent Acinetobacter bacterium. Microbiol Res. 2008;163:277-285.
Google Scholar | Crossref | Medline20. Nweke, CO, Orji, JC, Ahumibe, NC. Prediction of phenolic compound and formulated glyphosate toxicity in binary mixtures using Rhizobium species dehydrogenase activity. Adv Life Sci. 2015;5(2):27-38.
Google Scholar21. Hoffmann, C, Christofi, N. Testing the toxicity of influents to activated sludge plants with the Vibrio fischeri bioassay utilising a sludge matrix. Environ Toxicol. 2001;16(5):422-427.
Google Scholar | Crossref | Medline22. Nwanyanwu, CE, ABU, JA. In vitro effects of petroleum refinery wastewater on dehydrogenase activity in marine bacterial strains. Rev Amb água. 2010;5(1):21-29.
Google Scholar | Crossref23. Christofi, N, Hoffmann, C, Tosh, L. Hormesis responses of free and immobilized light-emitting bacteria. Ecotoxicol Environ Safety. 2002;52:227-231.
Google Scholar | Crossref | Medline | ISI24. Rodea-Palomares, I, Gonzalez-Garcia, C, Leganes, F, Fernandez-Pinas, F. Effect of pH, EDTA, and anions on heavy metal toxicity toward a bioluminescent Cyanobacterial bioreporter. Arch Environ Contamin Toxicol. 2009;57(3):477-487.
Google Scholar | Crossref | Medline25. Shen, K, Shen, C, Yuan, LU, et al. Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biol Res. 2009;42:183-187.
Google Scholar | Crossref | Medline | ISI26. Cho, CW, Pham, T, Jeon, YC, Vijayaraghavan, K, Choe, WS, Yun, YS. Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere. 2007;69:1003-1007.
Google Scholar | Crossref | Medline27. Wang, LJ, Liu, SS, Yuan, J, Liu, HL. Remarkable hormesis induced by 1- ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp.-Q67. Chemosphere. 2011;84:1440-1445.
Google Scholar | Crossref | Medline28. Field, LJ, Macdonald, D, Norton, SB, et al. Predicting amphipod toxicity from sediment chemistry using logistic regression model. Environ Toxicol Chem. 2005;21(9):1993-2005.
Google Scholar | Crossref29. Field, LJ, Macdonald, D, Norton, SB, et al. Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by zinc and cadmium. Environ Chem Ecotoxicol. 2011;3(3):68-74.
Google Scholar30. Azgin, C, Goksu, MZL. Acute toxicity of fluazifop-p-butyl (herbicide) on Oreochromis niloticus (L., 1754) larvae. Turkish J Fish Aquatic Sci. 2015;15:773-775.
Google Scholar31. Altenburger, R, Backhaus, T, Boedeker, W, Faust, M, Scholze, M, Grimme, LH. Predictability of the toxicity of the multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem. 2000;19(9):2341-2347.
Google Scholar | Crossref32. Scholze, M, Boedeker, W, Faust, M, Backhaus, T, Altenburger, R, Grimme, LH. A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environ Toxicol Chem. 2001;20(2):448-457.
Google Scholar | Crossref | Medline33. Beam, AL, Motsinger-Reif, AA. Optimization of nonlinear dose- and concentration-response models utilizing evolutionary computation. Dose-Response. 2011;9(3):387.
Google Scholar | SAGE Journals34. Calabrese, EJ, Baldwin, LA. Hormesis: a generalizable and unifying hypothesis. Crit Rev Toxicol. 2001;31(45):353-424.
Google Scholar | Crossref | Medline35. Cedergreen, N, Ritz, C, Streibig, JC. Improved empirical model describing hormesis. Environ Toxicol Chem. 2005;24(12):3166-3172.
Google Scholar | Crossref | Medline36. Beckon, WN, Parkins, C, Maximovich, A, Beckon, AV. A general approach to modeling biphasic relationships. Environ Sci Technol. 2008;42(4):1308-1314.
Google Scholar | Crossref | Medline37. Schabenberger, O, Tharp, BE, Kells, JJ, Penner, D. Statistical test for hormesis and effective dosages in herbicide dose-response. Agron J. 1999;91(4):713-721.
Google Scholar | Crossref38. Belz, RG, Piepho, HP. Modeling effective dosages in hormetic dose-response studies. PLoS One. 2012;7(3):1-10.
Google Scholar | Crossref39. Zhu, XW, Liu, SS, Qin, LT, Chen, F, Liu, HL. Modeling non-monotonic dose-response relationships: model evaluation and hormetic quantities exploration. Ecotoxicol Environ Safety. 2013;89:130-136.
Google Scholar | Crossref | Medline40. Tang, SY, Liang, JH, Xiang, CC, et al. A general model of hormesis in biological systems and its application to pest management. J R Soc Interface. 2019;16(157):1-11.
Google Scholar | Crossref41. Calabrese, EJ, Staudenmayer, JW, Stanek, EJ, Hoffmann, GR. Hormesis outperforms threshold model in national cancer institute antitumor drug screening database. Toxicol Sci. 2006;94(2):368-378.
Google Scholar | Crossref | Medline | ISI42. Pearce, O, Laubli, H, Verhagen, A, et al. Inverse hormesis of cancer growth mediated by narrow ranges of tumor-directed antibodies. Proc Natl Acad Sci U S A. 2014;111(16):5998.
Google Scholar | Crossref | Medline43. Dattilo, S, Mancuso, C, Koverech, G, et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing. 2015;12(1):1-19.
Google Scholar | Crossref | Medline44. Aoishi, Y, Yoshimasu, T, Oura, S, et al. Quantitative evaluation of hormesis in breast cancer using histoculture drug response assay. Dose-Response. 2019;17(4):1-6.
Google Scholar | SAGE Journals45. Bor, YJ . Optimal pest management and economic threshold. Agr Syst. 1995;49(2):113-133.
Google Scholar | Crossref46. Christensen, MG, Teicher, HB, Streibig, JC. Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag Sci. 2003;59(12):1303-1310.
Google Scholar | Crossref | Medline47. Jeske, DR, Xu, HK, Blessinger, T, Jensen, P, Trumble, J. Testing for the equality of EC50 values in the presence of unequal slopes with application to toxicity of selenium types. J Agr Biol Envir St. 2009;14(4):469-483.
Google Scholar | Crossref48. Lukas, HL, Henig, ET, Zimmermann, B. Optimization of phase diagrams by a least squares method using simultaneously different types of data. Calphad. 1977;1(3):225-236.
Google Scholar | Crossref49. Christian, R, Florent, B, Streibig, JC, Gerhard, D. Dose-response analysis using R. PLoS One. 2015;10(12):1-13.
Google Scholar50. Drage, S, Engelmeier, D, Bachmann, G, Sessitsch, A, Mitter, B, Hadacek, F. Combining microdilution with MicroRes: microbial substrate utilization, antimicrobial susceptibility and respiration. J Microbiol Meth. 2012;88(3):399-412.
Google Scholar | Crossref | Medline51. Wu, Y, Verdu, S. Functional properties of minimum mean-square error and mutual information. IEEE Trans Inf Theory. 2012;58(3):1289-1301.
Google Scholar | Crossref

Comments (0)

No login
gif