Understanding Physico-chemical Interactions of Dendrimers with Guest Molecules for Efficient Drug and Gene Delivery

1.

Gordon J, Kazemian H, Rohani S. MIL-53(Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery. Mater Sci Eng C. 2015;47:172–9. https://doi.org/10.1016/j.msec.2014.11.046.

CAS  Article  Google Scholar 

2.

Vo AQ, Feng X, Morott JT, Pimparade MB, Tiwari RV, Zhang F, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2016;98:108–21. https://doi.org/10.1016/j.ejpb.2015.11.015.

CAS  Article  PubMed  Google Scholar 

3.

Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17:849–65. https://doi.org/10.1007/s10311-018-00841-1.

CAS  Article  Google Scholar 

4.

Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.

Article  PubMed  PubMed Central  Google Scholar 

5.

Araujo RV, Santos SS, Ferreira EI, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23:1–27. https://doi.org/10.3390/molecules23112849.

CAS  Article  Google Scholar 

6.

Gupta A, Dubey S, Mishra M. Unique structures, properties and applications of dendrimers. J Drug Deliv Ther. 2018;8:328–39. https://doi.org/10.22270/jddt.v8i6-s.2083.

CAS  Article  Google Scholar 

7.

Magana N, Delia S, Vazquez-Lima H, Yepez R, Santillan R. Synthesis of frechet-type poly(aryl ether) dendrimers with allyl end groups: comparative convergent and divergent approaches. Arkivoc. 2017;5:117–28. https://doi.org/10.3998/ark.5550190.p009.994.

Article  Google Scholar 

8.

Sandoval-Yanez C, Rodriguez CC. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials. 2020;13:1–20. https://doi.org/10.3390/ma13030570.

CAS  Article  Google Scholar 

9.

• Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. 2020;13:1–31. https://doi.org/10.3390/ma13010065This is a comprehensive review which highlights various synthesis methods, properties and applications of dendrimers as excipients in pharmacological formulations including biomedical applications.

CAS  Article  Google Scholar 

10.

Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, et al. Morpholino-terminated dendrimer shows enhanced tumor pH-triggered cellular uptake, prolonged circulation time, and low cytotoxicity. Polymer. 2016;84:189–97. https://doi.org/10.1016/j.polymer.2015.12.056.

CAS  Article  Google Scholar 

11.

Kumar PS, Datta MS, Kumar DM, Kumar TV, Krishna V, Ram D. Potential application of dendrimers in drug delivery: a concise review and update. J Drug Deliv Ther. 2016;6:71–88. https://doi.org/10.22270/jddt.v6i2.1195.

CAS  Article  Google Scholar 

12.

Narmani A, Mohammadnejad J, Yavari K. Synthesis and evaluation of polyethylene glycol-and folic acid-conjugated -conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Deliv Sci Technol. 2019;50:278–86. https://doi.org/10.1016/j.jddst.2019.01.037.

CAS  Article  Google Scholar 

13.

Thanh VM, Nguyen TH, Tran TV, Ngoc UP, Ho MN, Nguyen TT, et al. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater Sci Eng C. 2018;82:291–8. https://doi.org/10.1016/j.msec.2017.07.051.

CAS  Article  Google Scholar 

14.

Rabiee N, Ahmadvand S, Ahmadi S, Fatahi Y, Dinarvand R, Bagherzadeh M, et al. Carbosilane dendrimers: drug and gene delivery applications. J Drug Deliv Sci Technol. 2020;59:101879. https://doi.org/10.1016/j.jddst.2020.101879.

CAS  Article  Google Scholar 

15.

Fan X, Zhang W, Hu Z, Li Z. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J Mater Chem B. 2017;5:1062–72. https://doi.org/10.1039/C6TB02234K.

CAS  Article  PubMed  Google Scholar 

16.

Rai AK, Tiwari R, Maurya P, Yadav P. Dendrimers: a potential carrier for targeted drug delivery system. Pharm biol eval. 2016;3:257–87. https://doi.org/10.5281/zenodo.56068.

Article  Google Scholar 

17.

Brunetti V, Bouchet LM, Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems. Nanoscale. 2015;7:3808–16. https://doi.org/10.1039/C4NR04438J.

CAS  Article  PubMed  Google Scholar 

18.

•• Dias AP, Santos SS, Silva JV, Parise-Filho R, Ferreira EI, Seoud OE, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;573:118814. https://doi.org/10.1016/j.ijpharm.2019.118814This review article provides in-detail description about dendrimers use in infectious diseases, cancer, neurological and information about available dendrimer products and in clinical phase.

CAS  Article  PubMed  Google Scholar 

19.

Gorzkiewicz M, Janaszewska A, Ficker M, Svenningsen SW, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf B: Biointerfaces. 2019;181:959–62. https://doi.org/10.1016/j.colsurfb.2019.06.056.

CAS  Article  PubMed  Google Scholar 

20.

Ganda IS, Zhong Q, Hali M, Albuquerque RLC, Padilha FF, da Rocha SRP, et al. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int J Pharm. 2017;527:79–91. https://doi.org/10.1016/j.ijpharm.2017.05.045.

CAS  Article  PubMed  PubMed Central  Google Scholar 

21.

Stolarska M, Gucwa K, Urbanczyk-Lipowska Z, Andruszkiewicz R. Peptide dendrimers as antifungal agents and carriers for potential antifungal agent–N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid–synthesis and antimicrobial activity. J Pept Sci. 2020;26:1–7. https://doi.org/10.1002/psc.3226.

CAS  Article  Google Scholar 

22.

Li N, Cai H, Jiang L, Hu J, Bains A, Hu J, et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9:6865–77. https://doi.org/10.1021/acsami.6b15505.

CAS  Article  PubMed  Google Scholar 

23.

• Sahoo RK, Gothwal A, Rani S, Nakhate KT, Gupta AU. PEGylated dendrimer mediated delivery of Bortezomib: drug conjugation versus encapsulation. Int J Pharm. 2020;584:119389–402. https://doi.org/10.1016/j.ijpharm.2020.119389This study reported the difference between conjugation and encapsulation of the drug Bortezomib to PAMAM dendrimer.

CAS  Article  PubMed  Google Scholar 

24.

Singh J, Jain K, Mishra NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cell Nanomed B. 2016;44:1626–34. https://doi.org/10.3109/21691401.2015.1129625.

CAS  Article  Google Scholar 

25.

Wang J, Li D, Fan Y, Shi M, Yang Y, Wang L, et al. Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. Nanoscale. 2019;11:22343–50. https://doi.org/10.1039/C9NR08309J.

CAS  Article  PubMed  Google Scholar 

26.

Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90. https://doi.org/10.1016/j.apmt.2018.05.002.

Article  PubMed  PubMed Central  Google Scholar 

27.

Bono N, Pennetta C, Bellucci M, Sganappa A, Malloggi C, Tadeschi G, et al. Role of generation on successful DNA delivery of PAMAM–(Guanidino)Neomycin conjugates. ACS Omega. 2019;4:6796–807. https://doi.org/10.1021/acsomega.8b02757.

CAS  Article  Google Scholar 

28.

Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, et al. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep. 2018;8:9410–23. https://doi.org/10.1038/s41598-018-27400-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

29.

Weregowska-Ciecwierz K, Wisniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv Cond Matter Phys. 2015;2015:1–28. https://doi.org/10.1155/2015/198175.

Article  Google Scholar 

30.

Singh AK, Gothwal A, Rani S, Rana M, Sharma AK, Yadav AK, et al. Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega. 2019;4:4519–29. https://doi.org/10.1021/acsomega.8b03445.

CAS  Article  Google Scholar 

31.

Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev. 2015;115:3388–432. https://doi.org/10.1021/cr5004634.

CAS  Article  PubMed  Google Scholar 

32.

Li D, Fan Y, Shen M, Banyai I, Shi X. Design of dual drug loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B. 2019;7:277–84. https://doi.org/10.1039/c8tb02723d.

CAS  Article  PubMed  Google Scholar 

33.

Yavuz B, Pehlivan SB, Bolu BS, Sanyal RN, Vural I, Unlu N. Dexamethasone-PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmcol. 2016;68:1010–20. https://doi.org/10.1111/jphp.12587.

CAS  Article  Google Scholar 

34.

Czarnik-Kwasniak J, Kwasniak K, Tutaj K, Filiks I, Uram L, Stompor M, et al. Glucoheptoamidated polyamidoamine PAMAM G3 dendrimer as a vehicle for succinate linked doxorubicin; enhanced toxicity of DOX against grade IV glioblastoma U-118 MG cells. J Drug Deliv Sci Tech. 2020;55:101424–32. https://doi.org/10.1016/j.jddst.2019.101424.

CAS  Article  Google Scholar 

35.

Li X, Vieweger M, Guo P. Self-assembly of four generations of RNA dendrimers for drug shielding with controllable layer-by-layer release. Nanoscale. 2020;12:16514–25. https://doi.org/10.1039/d0nr02614j.

CAS  Article  PubMed  Google Scholar 

36.

Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yua WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnlogy. 2018;16:1–10. https://doi.org/10.1189/s12951-018-0398-2.

Article  Google Scholar 

37.

Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin conjugated pH- and redox- responsive poly(amidoamine) dendrimer conjugate as an efficient drug delivery carrier for cancer therapy. Int J Nanomedicine. 2020;15:2751–64. https://doi.org/10.2147/IJN.S238536.

CAS  Article  PubMed  PubMed Central  Google Scholar 

38.

Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm. 2018;545:64–73. https://doi.org/10.1016/j.ijpharm.2018.04.027.

CAS  Article  PubMed  Google Scholar 

39.

Matsuura S, Katsumi H, Suzuki H, Hirai N, Hayashi H, Koshino K, et al. L-serine–modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. PNAS. 2018;115:10511–6. https://doi.org/10.1073/pnas.1808168115.

CAS 

Comments (0)

No login
gif