Gordon J, Kazemian H, Rohani S. MIL-53(Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery. Mater Sci Eng C. 2015;47:172–9. https://doi.org/10.1016/j.msec.2014.11.046.
2.Vo AQ, Feng X, Morott JT, Pimparade MB, Tiwari RV, Zhang F, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2016;98:108–21. https://doi.org/10.1016/j.ejpb.2015.11.015.
CAS Article PubMed Google Scholar
3.Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17:849–65. https://doi.org/10.1007/s10311-018-00841-1.
4.Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.
Article PubMed PubMed Central Google Scholar
5.Araujo RV, Santos SS, Ferreira EI, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23:1–27. https://doi.org/10.3390/molecules23112849.
6.Gupta A, Dubey S, Mishra M. Unique structures, properties and applications of dendrimers. J Drug Deliv Ther. 2018;8:328–39. https://doi.org/10.22270/jddt.v8i6-s.2083.
7.Magana N, Delia S, Vazquez-Lima H, Yepez R, Santillan R. Synthesis of frechet-type poly(aryl ether) dendrimers with allyl end groups: comparative convergent and divergent approaches. Arkivoc. 2017;5:117–28. https://doi.org/10.3998/ark.5550190.p009.994.
8.Sandoval-Yanez C, Rodriguez CC. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials. 2020;13:1–20. https://doi.org/10.3390/ma13030570.
9.• Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. 2020;13:1–31. https://doi.org/10.3390/ma13010065This is a comprehensive review which highlights various synthesis methods, properties and applications of dendrimers as excipients in pharmacological formulations including biomedical applications.
10.Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, et al. Morpholino-terminated dendrimer shows enhanced tumor pH-triggered cellular uptake, prolonged circulation time, and low cytotoxicity. Polymer. 2016;84:189–97. https://doi.org/10.1016/j.polymer.2015.12.056.
11.Kumar PS, Datta MS, Kumar DM, Kumar TV, Krishna V, Ram D. Potential application of dendrimers in drug delivery: a concise review and update. J Drug Deliv Ther. 2016;6:71–88. https://doi.org/10.22270/jddt.v6i2.1195.
12.Narmani A, Mohammadnejad J, Yavari K. Synthesis and evaluation of polyethylene glycol-and folic acid-conjugated -conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Deliv Sci Technol. 2019;50:278–86. https://doi.org/10.1016/j.jddst.2019.01.037.
13.Thanh VM, Nguyen TH, Tran TV, Ngoc UP, Ho MN, Nguyen TT, et al. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater Sci Eng C. 2018;82:291–8. https://doi.org/10.1016/j.msec.2017.07.051.
14.Rabiee N, Ahmadvand S, Ahmadi S, Fatahi Y, Dinarvand R, Bagherzadeh M, et al. Carbosilane dendrimers: drug and gene delivery applications. J Drug Deliv Sci Technol. 2020;59:101879. https://doi.org/10.1016/j.jddst.2020.101879.
15.Fan X, Zhang W, Hu Z, Li Z. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J Mater Chem B. 2017;5:1062–72. https://doi.org/10.1039/C6TB02234K.
CAS Article PubMed Google Scholar
16.Rai AK, Tiwari R, Maurya P, Yadav P. Dendrimers: a potential carrier for targeted drug delivery system. Pharm biol eval. 2016;3:257–87. https://doi.org/10.5281/zenodo.56068.
17.Brunetti V, Bouchet LM, Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems. Nanoscale. 2015;7:3808–16. https://doi.org/10.1039/C4NR04438J.
CAS Article PubMed Google Scholar
18.•• Dias AP, Santos SS, Silva JV, Parise-Filho R, Ferreira EI, Seoud OE, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;573:118814. https://doi.org/10.1016/j.ijpharm.2019.118814This review article provides in-detail description about dendrimers use in infectious diseases, cancer, neurological and information about available dendrimer products and in clinical phase.
CAS Article PubMed Google Scholar
19.Gorzkiewicz M, Janaszewska A, Ficker M, Svenningsen SW, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf B: Biointerfaces. 2019;181:959–62. https://doi.org/10.1016/j.colsurfb.2019.06.056.
CAS Article PubMed Google Scholar
20.Ganda IS, Zhong Q, Hali M, Albuquerque RLC, Padilha FF, da Rocha SRP, et al. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int J Pharm. 2017;527:79–91. https://doi.org/10.1016/j.ijpharm.2017.05.045.
CAS Article PubMed PubMed Central Google Scholar
21.Stolarska M, Gucwa K, Urbanczyk-Lipowska Z, Andruszkiewicz R. Peptide dendrimers as antifungal agents and carriers for potential antifungal agent–N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid–synthesis and antimicrobial activity. J Pept Sci. 2020;26:1–7. https://doi.org/10.1002/psc.3226.
22.Li N, Cai H, Jiang L, Hu J, Bains A, Hu J, et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9:6865–77. https://doi.org/10.1021/acsami.6b15505.
CAS Article PubMed Google Scholar
23.• Sahoo RK, Gothwal A, Rani S, Nakhate KT, Gupta AU. PEGylated dendrimer mediated delivery of Bortezomib: drug conjugation versus encapsulation. Int J Pharm. 2020;584:119389–402. https://doi.org/10.1016/j.ijpharm.2020.119389This study reported the difference between conjugation and encapsulation of the drug Bortezomib to PAMAM dendrimer.
CAS Article PubMed Google Scholar
24.Singh J, Jain K, Mishra NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cell Nanomed B. 2016;44:1626–34. https://doi.org/10.3109/21691401.2015.1129625.
25.Wang J, Li D, Fan Y, Shi M, Yang Y, Wang L, et al. Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. Nanoscale. 2019;11:22343–50. https://doi.org/10.1039/C9NR08309J.
CAS Article PubMed Google Scholar
26.Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90. https://doi.org/10.1016/j.apmt.2018.05.002.
Article PubMed PubMed Central Google Scholar
27.Bono N, Pennetta C, Bellucci M, Sganappa A, Malloggi C, Tadeschi G, et al. Role of generation on successful DNA delivery of PAMAM–(Guanidino)Neomycin conjugates. ACS Omega. 2019;4:6796–807. https://doi.org/10.1021/acsomega.8b02757.
28.Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, et al. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep. 2018;8:9410–23. https://doi.org/10.1038/s41598-018-27400-6.
CAS Article PubMed PubMed Central Google Scholar
29.Weregowska-Ciecwierz K, Wisniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv Cond Matter Phys. 2015;2015:1–28. https://doi.org/10.1155/2015/198175.
30.Singh AK, Gothwal A, Rani S, Rana M, Sharma AK, Yadav AK, et al. Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega. 2019;4:4519–29. https://doi.org/10.1021/acsomega.8b03445.
31.Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev. 2015;115:3388–432. https://doi.org/10.1021/cr5004634.
CAS Article PubMed Google Scholar
32.Li D, Fan Y, Shen M, Banyai I, Shi X. Design of dual drug loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B. 2019;7:277–84. https://doi.org/10.1039/c8tb02723d.
CAS Article PubMed Google Scholar
33.Yavuz B, Pehlivan SB, Bolu BS, Sanyal RN, Vural I, Unlu N. Dexamethasone-PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmcol. 2016;68:1010–20. https://doi.org/10.1111/jphp.12587.
34.Czarnik-Kwasniak J, Kwasniak K, Tutaj K, Filiks I, Uram L, Stompor M, et al. Glucoheptoamidated polyamidoamine PAMAM G3 dendrimer as a vehicle for succinate linked doxorubicin; enhanced toxicity of DOX against grade IV glioblastoma U-118 MG cells. J Drug Deliv Sci Tech. 2020;55:101424–32. https://doi.org/10.1016/j.jddst.2019.101424.
35.Li X, Vieweger M, Guo P. Self-assembly of four generations of RNA dendrimers for drug shielding with controllable layer-by-layer release. Nanoscale. 2020;12:16514–25. https://doi.org/10.1039/d0nr02614j.
CAS Article PubMed Google Scholar
36.Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yua WE. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnlogy. 2018;16:1–10. https://doi.org/10.1189/s12951-018-0398-2.
37.Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin conjugated pH- and redox- responsive poly(amidoamine) dendrimer conjugate as an efficient drug delivery carrier for cancer therapy. Int J Nanomedicine. 2020;15:2751–64. https://doi.org/10.2147/IJN.S238536.
CAS Article PubMed PubMed Central Google Scholar
38.Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm. 2018;545:64–73. https://doi.org/10.1016/j.ijpharm.2018.04.027.
CAS Article PubMed Google Scholar
39.Matsuura S, Katsumi H, Suzuki H, Hirai N, Hayashi H, Koshino K, et al. L-serine–modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. PNAS. 2018;115:10511–6. https://doi.org/10.1073/pnas.1808168115.
Comments (0)