1.
Murphy, E. Sockets, linings and interfaces. Clin Prosthet Orthot 1984; 8: 4–10.
Google Scholar2.
Murdoch, G. The Dundee socket-a total contact socket for the below-knee amputation. Orthot Prosthet 1965; 19: 231–234.
Google Scholar3.
Bakalim, G. Experiences with the total-contact prosthesis. Artif Limbs 1967; 11: 51–57.
Google Scholar |
Medline4.
Staats, T, Lundt, J. The UCLA total surface bearing suction below-knee prosthesis. Clin Prosthet Orthot 1987; 11: 118–130.
Google Scholar5.
Wilson, AB. Vacuum forming of plastics in prosthetics and orthotics. Orthot Prosthet 1974; 28: 12–20.
Google Scholar6.
Lehneis, HR, Chu, DS, Adelglass, H. Flexible prosthetic sockets. Clin Prosthet Orthot 1984; 8: 6–8.
Google Scholar7.
Wilson, AB. Lower-limb modular prostheses: a status report. Orthot Prosthet 1975; 29: 23–32.
Google Scholar8.
Staros, A. Economics of modular prostheses. Prosthet Orthot Int 1979; 3: 147–149.
Google Scholar |
SAGE Journals |
ISI9.
Stallard, J, Major, RE. A review of reciprocal walking systems for paraplegic patients: factors affecting choice and economic justification. Prosthet Orthot Int 1998; 22: 240–247
Google Scholar |
SAGE Journals |
ISI10.
Boone, D, Harlan, J, Burgess, E. Automated fabrication of mobility aids: review of the AFMA process and DVA/Seattle shapemaker software design. J Rehabil Res Dev 1994; 31: 42–49.
Google Scholar |
Medline11.
Highsmith, MJ, Nelson, LM, Carbone, NT, et al. Outcomes associated with the intrepid dynamic exoskeletal orthosis (IDEO): a systematic review of the literature. Mil Med 2016; 181: 69–76.
Google Scholar |
Crossref |
Medline12.
Condie, E, Scott, H, Treweek, S. Lower limb prosthetic outcome measures: a review of the literature 1995 to 2005. J Prosthet Orthot 2006; 18: 13–45.
Google Scholar |
Crossref13.
Kobayashi, T, Singer, ML, Orendurff, MS, et al. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke. Clin Biomech 2015; 30: 775–780.
Google Scholar |
Crossref |
Medline |
ISI14.
Fatone, S, Gard, SA, Malas, BS. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Arch Phys Med Rehabil 2009; 90: 810–818.
Google Scholar |
Crossref |
Medline |
ISI15.
Boone, D, Kobayashi, T, Chou, T, et al. Influence of malalignment on socket reaction moments during gait in amputees with transtibial prostheses. Gait Posture 2013; 37: 620–626.
Google Scholar |
Crossref |
Medline |
ISI16.
Kobayashi, T, Orendurff, M, Boone, D. Dynamic alignment of transtibial prostheses through visualization of socket reaction moments. Prosthet Orthot Int 2015; 39: 512–516.
Google Scholar |
SAGE Journals |
ISI17.
Brånemark, R, Brånemark, PI, Rydevik, B, et al. Osseoin-tegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 2001; 38: 175–181.
Google Scholar |
Medline18.
Rovick, JS, Chan, RB, Van Vorhis, R, et al. Computer-aided manufacturing in prosthetics: various possibilities using industrial equipment. In: Proceedings of the 7th world congress of the International Society for Prosthetics and Orthotics, Chicago, IL, , p. 22. Brussels: ISPO.
Google Scholar19.
Scherberger, H. Neural control of motor prostheses. Curr Opin Neurobiol 2009; 19: 629–633.
Google Scholar |
Crossref |
Medline20.
Hargrove, LJ, Huang, H, Schultz, AE, et al. Toward the development of a neural interface for lower limb prosthesis control. Annu Int Conf IEEE Eng Med Biol Soc 2009; 2009: 2111–2114.
Google Scholar21.
Loeb, GE, Peck, RA, Moore, WH, et al. BION™ system for distributed neural prosthetic interfaces. Med Eng Phys 2001; 23: 9–18.
Google Scholar |
Crossref |
Medline
Comments (0)