The effect of custom carbon ankle-foot orthosis alignment on roll-over shape and center of pressure velocity

1. Adamczyk, PG, Collins, SH, Kuo, AD. The advantages of a rolling foot in human walking. J Exp Biol 2006; 209: 3953–3963.
Google Scholar | Crossref | Medline | ISI2. Perry, J (ed.). Gait analysis: normal and pathological function. Thorofare, NJ: SLACK Inc., 1992.
Google Scholar3. Hansen, AH, Childress, DS, Knox, EH. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses. Prosthet Orthot Int 2000; 24: 205–215.
Google Scholar | SAGE Journals | ISI4. Hansen, AH, Meier, MR, Sam, M, et al. Alignment of trans-tibial prostheses based on roll-over shape principles. Prosthet Orthot Int 2003; 27: 89–99.
Google Scholar | SAGE Journals | ISI5. Curtze, C, Hof, AL, Van Keeken, HG, et al. Comparative roll-over analysis of prosthetic feet. J Biomech 2009; 42: 1746–1753.
Google Scholar | Crossref | Medline6. Hansen, AH. Effects of alignment on the roll-over shapes of prosthetic feet. Prosthet Orthot Int 2008; 32: 390–402.
Google Scholar | SAGE Journals | ISI7. Sinitski, EH, Hansen, AH, Wilken, JM. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses. J Biomech 2012; 45: 588–594.
Google Scholar | Crossref | Medline | ISI8. Ikeda, AJ, Fergason, JR, Wilken, JM. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis. Prosthet Orthot Int 2018; 42: 265–274.
Google Scholar | SAGE Journals | ISI9. Fatone, S, Hansen, AH. Effect of ankle-foot orthosis on roll-over shape in adults with hemiplegia. J Rehabil Res Dev 2007; 44: 11–20.
Google Scholar | Crossref | Medline10. Hansen, AH, Childress, DS. Investigations of roll-over shape: implications for design, alignment, and evaluation of ankle-foot prostheses and orthoses. Disabil Rehabil 2010; 32: 2201–2209.
Google Scholar | Crossref | Medline | ISI11. Wang, CC, Hansen, AH. Response of able-bodied persons to changes in shoe rocker radius during walking: changes in ankle kinematics to maintain a consistent roll-over shape. J Biomech 2010; 43: 2288–2293.
Google Scholar | Crossref | Medline | ISI12. Cornwall, M, McPoil, T. Velocity of the center of pressure during walking. J Am Podiatr Med Assoc 2000; 90: 334–338.
Google Scholar | Crossref | Medline13. Klenow, TD, Kahle, JT, Highsmith, MJ. The dead spot phenomenon in prosthetic gait: quantified with an analysis of center of pressure progression and its velocity in the sagittal plane. Clin Biomech 2016; 38: 56–62.
Google Scholar | Crossref | Medline14. Lusardi, MM, Jorge, M, Jorge, M, et al. Orthotics and prosthetics in rehabilitation. Philadelphia, PA: Elsevier Saunders, 2012.
Google Scholar15. Novacheck, T, Beattie, C, Rozumalski, A, et al. Quantifying the spring-like properties of ankle-foot orthoses (AFOs). J Prosthet Orthot 2007; 19: 98–103.
Google Scholar | Crossref16. Rettig, O, Wolf, S, Doederlein, L. Kinetics of a carbon spring AF-orthosis and its influence on the kinetics of gait. Gait Posture 2003; 18: 94.
Google Scholar17. Fatone, S, Sorci, E, Hansen, AH. Effects of clinically prescribed ankle foot orthoses on ankle-foot roll-over shapes: a case series. Am Acad Orthot Prosthet 2009; 21: 196–203.
Google Scholar | Crossref18. Bedigrew, KM, Patzkowski, JC, Wilken, JM, et al. Can an integrated orthotic and rehabilitation program decrease pain and improve function after lower extremity trauma? Clin Orthop Relat Res 2014; 472: 3017–3025.
Google Scholar | Crossref | Medline | ISI19. Potter, BK, Sheu, RG, Stinner, D, et al. Multisite evaluation of a custom energy-storing carbon fiber orthosis for patients with residual disability after lower-limb trauma. J Bone Joint Surg Am 2018; 100: 1781–1789.
Google Scholar | Crossref | Medline20. Patzkowski, JC, Blanck, RV, Owens, JG, et al. Comparative effect of orthosis design on functional performance. J Bone Joint Surg Am 2012; 94: 507–515.
Google Scholar | Crossref | Medline | ISI21. Shawen, SB, Keeling, JJ, Branstetter, J, et al. The mangled foot and leg: salvage versus amputation. Foot Ankle Clin 2010; 15: 63–75.
Google Scholar | Crossref | Medline22. Owens, JG, Blair, JA, Patzkowski, JC, et al. Return to running and sports participation after limb salvage. J Trauma 2011; 71: S120–S124.
Google Scholar | Crossref | Medline23. Wilken, JM, Rodriguez, KM, Brawner, M, et al. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture 2012; 35: 301–307.
Google Scholar | Crossref | Medline | ISI24. Vaughan, CL, O’Malley, MJ. Froude and the contribution of naval architecture to our understanding of bipedal locomotion. Gait Posture 2005; 21: 350–362.
Google Scholar | Crossref | Medline | ISI25. Grood, ES, Suntay, WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105: 136–144.
Google Scholar | Crossref | Medline | ISI26. Hansen, AH, Childress, DS, Knox, EH. Roll-over shapes of human locomotor systems: effects of walking speed. Clin Biomech 2004; 19: 407–414.
Google Scholar | Crossref | Medline | ISI27. Brown, SE, Russell Esposito, E, Wilken, JM. Effect of ankle foot orthosis alignment on muscle activity. J Biomech 2017; 61: 51–57.
Google Scholar | Crossref | Medline28. Mitchell, M, Kyberd, PJ, Biden, E. A study of the rollover shape in unimpaired persons. Am Acad Orthot Prosthet 2013; 25: 138–142.
Google Scholar | Crossref

Comments (0)

No login
gif