Barbieri, I, Tzelepis, K, Pandolfini, L, Shi, J, Millán-Zambrano, G, Robson, SC, Aspris, D, Migliori, V, Bannister, AJ, Han, N, et al. 2017. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 552(7683):126–131.
Google Scholar |
Crossref |
Medline
Birket, MJ, Orr, AL, Gerencser, AA, Madden, DT, Vitelli, C, Swistowski, A, Brand, MD, Zeng, X. 2011. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci. 124(Pt 3):348–358.
Google Scholar |
Crossref |
Medline
Brunetti, G, Di Benedetto, A, Posa, F, Colaianni, G, Faienza, MF, Ballini, A, Colucci, S, Passeri, G, Lo Muzio, L, Grano, M, et al. 2018. High expression of trail by osteoblastic differentiated dental pulp stem cells affects myeloma cell viability. Oncol Rep. 39(4):2031–2039.
Google Scholar |
Medline
Chelmicki, T, Roger, E, Teissandier, A, Dura, M, Bonneville, L, Rucli, S. 2021. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature. 591(7849):312–316.
Google Scholar |
Crossref |
Medline
Cheng, Y, Luo, H, Izzo, F, Pickering, BF, Nguyen, D, Myers, R, Schurer, A, Gourkanti, S, Brüning, JC, Vu, LP, et al. 2019. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep. 28(7):1703–1716.e6.
Google Scholar |
Crossref |
Medline
Dickens, F . 1941. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour. Biochem J. 35(8–9):1011–1023.
Google Scholar |
Crossref |
Medline
Esen, E, Chen, J, Karner, CM, Okunade, AL, Patterson, BW, Long, F. 2013. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17(5):745–755.
Google Scholar |
Crossref |
Medline
Folmes, CD, Nelson, TJ, Martinez-Fernandez, A, Arrell, DK, Lindor, JZ, Dzeja, PP, Ikeda, Y, Perez-Terzic, C, Terzic, A. 2011. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14(2):264–271.
Google Scholar |
Crossref |
Medline
Fu, Y, Dominissini, D, Rechavi, G, He, C. 2014. Gene expression regulation mediated through reversible m⁶A RNA methylation. Nat Rev Genet. 15(5):293–306.
Google Scholar |
Crossref |
Medline
Gronthos, S, Brahim, J, Li, W, Fisher, LW, Cherman, N, Boyde, A, DenBesten, P, Robey, PG, Shi, S. 2002. Stem cell properties of human dental pulp stem cells. J Dent Res. 81(8):531–535.
Google Scholar |
SAGE Journals |
ISI
Gronthos, S, Mankani, M, Brahim, J, Robey, PG, Shi, S. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 97(25):13625–13630.
Google Scholar |
Crossref |
Medline |
ISI
Guntur, AR, Le, PT, Farber, CR, Rosen, CJ. 2014. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology. 155(5):1589–1595.
Google Scholar |
Crossref |
Medline
Huang, H, Weng, H, Sun, W, Qin, X, Shi, H, Wu, H, Zhao, BS, Mesquita, A, Liu, C, Yuan, CL, et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20(3):285–295.
Google Scholar |
Crossref |
Medline
Iacobazzi, V, Infantino, V. 2014. Citrate—new functions for an old metabolite. Biol Chem. 395(4):387–399.
Google Scholar |
Crossref |
Medline
Jeon, EJ, Lee, KY, Choi, NS, Lee, MH, Kim, HN, Jin, YH, Ryoo, HM, Choi, JY, Yoshida, M, Nishino, N, et al. 2006. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 281(24):16502–16511.
Google Scholar |
Crossref |
Medline
Jin, Z, Kho, J, Dawson, B, Jiang, MM, Chen, Y, Ali, S, Burrage, LC, Grover, M, Palmer, DJ, Turner, DL, et al. 2021. Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation.J Clin Invest. 131(5):e138935.
Google Scholar |
Crossref |
Medline
Komarova, SV, Ataullakhanov, FI, Globus, RK. 2000. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am J Physiol Cell Physiol. 279(4):C1220–C1229.
Google Scholar |
Crossref |
Medline
Lai, L, Reineke, E, Hamilton, DJ, Cooke, JP. 2019. Glycolytic switch is required for transdifferentiation to endothelial lineage. Circulation. 139(1):119–133.
Google Scholar |
Crossref |
Medline
Lee, WC, Ji, X, Nissim, I, Long, F. 2020. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts. Cell Rep. 32(10):108108.
Google Scholar |
Crossref |
Medline
Liu, J, Yue, Y, Han, D, Wang, X, Fu, Y, Zhang, L, Jia, G, Yu, M, Lu, Z, Deng, X, et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10(2):93–95.
Google Scholar |
Crossref |
Medline
Ma, C, Tian, X, Kim, JP, Xie, D, Ao, X, Shan, D, Lin, Q, Hudock, MR, Bai, X, Yang, J. 2018. Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A. 115(50):E11741–E11750.
Google Scholar |
Crossref |
Medline
Maity, J, Deb, M, Greene, C, Das, H. 2020. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol. 36:101622.
Google Scholar |
Crossref |
Medline
Morganti, C, Bonora, M, Marchi, S, Ferroni, L, Gardin, C, Wieckowski, MR. 2020. Citrate mediates crosstalk between mitochondria and the nucleus to promote human mesenchymal stem cell in vitro osteogenesis. Cells. 9(4):1034.
Google Scholar |
Crossref
Pittenger, MF, Mackay, AM, Beck, SC, Jaiswal, RK, Douglas, R, Mosca, JD, Moorman, MA, Simonetti, DW, Craig, S, Marshak, DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science. 284(5411):143–147.
Google Scholar |
Crossref |
Medline |
ISI
Shares, BH, Busch, M, White, N, Shum, L. 2018. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation. J Biol Chem. 293(41):16019–16027.
Google Scholar |
Crossref |
Medline
Shen, WC, Lai, YC, Li, LH, Liao, K, Lai, HC, Kao, SY, Wang, J, Chuong, CM, Hung, SC. 2019. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun. 10(1):2226.
Google Scholar |
Crossref
Shyh-Chang, N, Ng, HH. 2017. The metabolic programming of stem cells. Genes Dev. 31(4):336–346.
Google Scholar |
Crossref |
Medline
Sun, HL, Zhu, AC, Gao, Y, Terajima, H, Fei, Q, Liu, S, Zhang, L, Zhang, Z, Harada, BT, He, YY, et al. 2020. Stabilization of ERK-phosphorylated METTL3 by USP5 increases m6A methylation. Mol Cell. 80(4):633–647.e7.
Google Scholar |
Crossref |
Medline
Sun, J, Aluvila, S, Kotaria, R, Mayor, JA, Walters, DE, Kaplan, RS. 2010. Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/function analysis. Mol Cell Pharmacol. 2(3):101–110.
Google Scholar |
Medline
Verschueren, KHG, Blanchet, C, Felix, J, Dansercoer, A, De Vos, D, Bloch, Y, Van Beeumen, J, Svergun, D, Gutsche, I, Savvides, SN, et al. 2019. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature. 568(7753):571–575.
Google Scholar |
Crossref |
Medline
Wang, J, Li, Y, Wang, P, Han, G, Zhang, T, Chang, J, Yin, R, Shan, Y, Wen, J, Xie, X, et al. 2020. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell. 27(1):81–97.e8.
Google Scholar |
Crossref |
Medline
Wang, X, Feng, J, Xue, Y, Guan, Z, Zhang, D, Liu, Z, Gong, Z, Wang, Q, Huang, J, Tang, C, et al. 2016. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature. 534(7608):575–578.
Google Scholar |
Crossref |
Medline
Wang, X, Lu, Z, Gomez, A, Hon, GC, Yue, Y, Han, D, Fu, Y, Parisien, M, Dai, Q, Jia, G, et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505(7481):117–120.
Google Scholar |
Crossref |
Medline
Wang, X, Zhao, BS, Roundtree, IA, Lu, Z, Han, D, Ma, H, Weng, X, Chen, K, Shi, H, He, C. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell. 161(6):1388–1399.
Google Scholar |
Crossref |
Medline
Wellen, KE, Hatzivassiliou, G, Sachdeva, UM, Bui, TV, Cross, JR, Thompson, CB. 2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 324(5930):1076–1080.
Google Scholar |
Crossref |
Medline
Wu, Y, Xie, L, Wang, M, Xiong, Q, Guo, Y, Liang, Y, Li, J, Sheng, R, Deng, P, Wang, Y, et al. 2018. METTL3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9(1):4772.
Google Scholar |
Crossref |
Medline
Yoon, KJ, Ringeling, FR, Vissers, C, Jacob, F, Pokrass, M, Jimenez-Cyrus, D, Su, Y, Kim, NS, Zhu, Y, Zheng, L, et al. 2017. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell. 171(4):877–889.e17.
Google Scholar |
Crossref |
Medline
Zhao, X, Yang, Y, Sun, BF, Shi, Y, Yang, X, Xiao, W, Hao, YJ, Ping, XL, Chen, YS, Wang, WJ, et al. 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24(12):1403–1419.
Google Scholar |
Crossref |
Medline
Zhou, J, Wan, J, Gao, X, Zhang, X, Jaffrey, SR, Qian, SB. 2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature. 526(7574):591–594.
Google Scholar |
Crossref |
Medline
Zhu, S, Wurdak, H, Schultz, PG. 2010. Directed embryonic stem cell differentiation with small molecules. Future Med Chem. 2(6):965–973.
Google Scholar |
Crossref |
Medline
Comments (0)