1.
Nork, TM, Rasmussen, CA, Christian, BJ, Croft, MA, Murphy, CJ. Emerging imaging technologies for assessing ocular toxicity in laboratory animals. In: Weir, A, Collins, M, eds. Assessing Ocular Toxicology in Laboratory Animals. Molecular and Integrative Toxicology. Humana Press; 2012:53–121.
Google Scholar |
Crossref2.
Ramos, MF, Attar, M, Stern, M, et al. Safety evaluation of ocular drugs. In: Faqi, AS , ed. A Comprehensive Guide to Toxicology in Preclinical Drug Development. 2nd ed. Elsevier; 2017:758–812.
Google Scholar |
Crossref3.
Soukup, P, Lenz, B, Altmann, B, Badillo, S, Atzpodien, E-A, Pot, SA. Combined cSLO-OCT imaging as a tool in preclinical ocular toxicity testing: a comparison to standard in-vivo and pathology methods. J Pharmacol Toxicol Methods. 2020;104:106873.
Google Scholar |
Crossref |
Medline4.
Yiu, G, Wang, Z, Munevar, C, et al. Comparison of chorioretinal layers in rhesus macaques using spectral-domain optical coherence tomography and high-resolution histological sections. Exp Eye Res. 2018;168:69–76.
Google Scholar |
Crossref |
Medline5.
Short, B . Selected aspects of ocular toxicity studies with a focus on high-quality pathology reports: a pathology/toxicology consultant’s perspective. Toxicol Pathol. Preprint. Posted online August 20, 2020. doi:10.1177/0192623320946712.
Google Scholar6.
Kolb, H . Photoreceptors. Webvision. Moran Eye Center. Updated July 2013. Accessed September 21, 2021.
https://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/photoreceptors/ Google Scholar7.
Imamoto, Y, Shichida, Y. Cone visual pigments. Biochim Biophys Acta. 2014;1837(5):664–673.
Google Scholar |
Crossref |
Medline8.
Shichida, Y, Matsuyama, T. Evolution of opsins and phototransduction. Phil Trans R Soc B. 2009;364:2881–2895.
Google Scholar |
Crossref |
Medline9.
May-Simera, H, Nagel-Wolfrum, K, Wolfrum, U. Cilia—the sensory antennae in the eye. Prog Retin Eye Res. 2017;60:144–180.
Google Scholar |
Crossref |
Medline10.
Muthuswamy, A, Pardo, ID, Rao, DB, Switzer, RC, III, Sharma, AK, Bolon, B. Neuroanatomy and sampling of central projections for the visual system in mammals used in toxicity testing. Toxicol Pathol. 2020;26:192623320967279. doi:10.1177/0192623320967279.
Google Scholar11.
Lamb, TD . Why rods and cones? Eye (Lond). 2016;30(2):179–185.
Google Scholar |
Crossref |
Medline12.
Beauchemin, ML . The fine structure of the pig’s retina. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;190(1):27–45.
Google Scholar |
Crossref |
Medline13.
Chandler, MJ, Smith, PJ, Samuelson, DA, MacKay, EO. Photoreceptor density of the domestic pig retina. Vet Ophthalmol. 1999;2(3):179–184.
Google Scholar |
Crossref |
Medline14.
Curcio, CA, Sloan, KR, Kalina, RE, Hendrickson, AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.
Google Scholar |
Crossref |
Medline15.
Famiglietti, EV, Sharpe, SJ. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis Neurosci. 1995;12(6):1151–75.
Google Scholar |
Crossref |
Medline16.
Gerke, CG, Hao, F, Wong, F. Topography of rods and cones in the retina of the domestic pig. HKMJ. 1995;1(4):302–308.
Google Scholar17.
Packer, O, Hendrickson, AE, Curcio, CA. Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J Comp Neurol. 1989;288(1):165–83.
Google Scholar |
Crossref |
Medline18.
Wikler, KC, Williams, RW, Rakic, P. Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J Comp Neurol. 1990;297(4):499–508.
Google Scholar |
Crossref |
Medline19.
Ahnelt, PK, Kolb, H. The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res. 2000;19(6):711–77. doi:10.1016/s1350-9462(00)00012-4. PMID:
11029553.
Google Scholar |
Crossref |
Medline20.
Bernstein, PS, Li, B, Vachali, PP, et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34–66.
Google Scholar |
Crossref |
Medline21.
Bringmann, A, Syrbe, S, Görner, K, et al. The primate fovea: structure, function and development. Prog Retin Eye Res. 2018;66:49–84.
Google Scholar |
Crossref |
Medline22.
Hendrickson, A, Kupfer, C. The histogenesis of the fovea in the macaque monkey. Invest Opthalmol Vis Sci. 1976;15(9):746–756.
Google Scholar |
Medline23.
Vezina, M . Comparative ocular anatomy in commonly used laboratory animals. In: Weir, A, Collins, M, eds. Assessing Ocular Toxicology in Laboratory Animals. Molecular and Integrative Toxicology. Humana Press; 2012:1–21.
Google Scholar |
Crossref24.
Oyster, CW, Takahashi, ES, Hurst, DC. Density, soma size, and regional distribution of rabbit retinal ganglion cells. J Neurosci. 1981;1(12):1331–1346.
Google Scholar |
Crossref |
Medline25.
Mowat, FM, Petersen-Jones, SM, Williamson, H, et al. Topographical characterization of cone photoreceptors and the area centralis of the canine retina. Mol Vis. 2008;14:2518–2527.
Google Scholar |
Medline26.
Yamaue, Y, Hosaka, YZ, Ueharai, M. Spatial relationships among the cellular tapetum, visual streak and rod density in dogs. J Vet Med Sci. 2015;77(2):175–179.
Google Scholar |
Crossref |
Medline27.
Shrader, SM, Greentree, WF. Göttingen minipigs in ocular research. Toxicol Pathol. 2018;46(4):403–407.
Google Scholar |
SAGE Journals |
ISI28.
Beltran, WA, Cideciyan, AV, Guziewicz, KE, et al. Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations. PLoS One. 2014;9(3):e90390. doi: 10.1371/journal.pone.0090390.
Google Scholar |
Crossref |
Medline29.
Peichl, L . Topography of ganglion cells in the dog and wolf retina. J Comp Neurol. 1992;324(4):603–620.
Google Scholar |
Crossref |
Medline30.
De Schaepdrijver, L, Simoens, P, Lauwers, H, De Geest, JP. Retinal vascular patterns in domestic animals. Res Vet Sci. 1989;47(1):34–42.
Google Scholar |
Crossref |
Medline31.
Muraoka, Y, Ikeda, HO, Nakano, N, et al. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One. 2012;7(4):e36135. doi:10.1371/journal.pone.0036135.
Google Scholar |
Crossref |
Medline32.
Hendrickson, A, Hicks, D. Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res. 2002;74(4):435–444.
Google Scholar |
Crossref |
Medline33.
Vrolyk, V, Desmarais, MJ, Lambert, D, Haruna, J, Benoit-Biancamano, MO. Neonatal and juvenile ocular development in Göttingen minipigs and domestic pigs: a histomorphological and immunohistochemical study. Vet Pathol. 2020;57(6):889–914.
Google Scholar |
SAGE Journals |
ISI34.
Scott, P, de Castro, J, DeMarco, P, et al. Progression of Pro23His retinopathy in a miniature swine model of retinitis pigmentosa. Transl Vis Sci Technol. 2017;6(2):4.
Google Scholar |
Crossref |
Medline35.
Volland, S, Esteve-Rudd, J, Hoo, J, Yee, C, Williams, DS. A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS One. 2015;10(4):e0125631. Published April 29, 2015. doi:10.1371/journal.pone.0125631.
Google Scholar |
Crossref |
Medline36.
Rodger, J, Dunlop, SA, Beaver, R, Beazley, LD. The development and mature organization of the end-artery retinal vasculature in a marsupial, the dunnart Sminthopsis crassicaudata. Vis Res. 2001;41(1):13–21.
Google Scholar |
Crossref |
Medline37.
Simoens, P, De Schaepdrijver, L, Lauwers, H. Morphologic and clinical study of the retinal circulation in the miniature pig. A: morphology of the retinal microvasculature. Exp Eye Res. 1992;54(6):965–973.
Google Scholar |
Crossref |
Medline38.
Peynshaert, K, Devoldere, J, Minnaert, A-K, De Smedt, SC, Remaut, K. Morphology and composition of the inner limiting membrane: species-specific variations and relevance toward drug delivery research. Curr Eye Res. 2019;44(5):465–475.
Google Scholar |
Crossref |
Medline39.
Lee, MS, Gupta, N, Loewenstein, J, Wepner, M, Milam, AM. Retinal cone toxicity in an ovarian cancer patient treated with Irofluven. IOVS. 2003;44:13, 519.
Google Scholar40.
Vellonen, KS, Soini, EM, del Amo, EM, Urtti, A. Prediction of ocular drug distribution from systemic blood circulation. Mol Pharmaceutics. 2016;13(9):2906–2911.
Google Scholar |
Crossref |
Medline41.
Bregman, CL, Adler, RR, Morton, DG, Regan, KS, Yano, BL. Recommended tissue list for histopathologic examination in repeat-dose toxicity and carcinogenicity studies: a proposal of the Society of Toxicologic Pathology (STP). Toxicol Pathol. 2003;31(2):252–253.
Google Scholar |
SAGE Journals |
ISI42.
Bolon, B, Garman, RH, Pardo, ID, et al. STP position paper: recommended practices for sampling and processing the nervous system (brain, spinal cord, nerve, and eye) during nonclinical general toxicity studies. Toxicol Pathol. 2013;41(7):1028–1048.
Google Scholar |
SAGE Journals |
ISI43.
Naylor, SW, Czajkowski, M, Harvey, W, Smith, M, Bradley, AE, Cary, M. Histopathological findings in cynomolgus macaques (Macaca fascicularis) consisted with secondary immunological reaction to biotherapeutics with an emphasis on the CNS and eye. Toxicol Pathol. 2019;47(2):165–173.
Google Scholar |
SAGE Journals |
ISI44.
Ramos, MF, Teixeira, L, Brandt, CR, Auyeung-Kim, D. Ocular immunopathology. In: Parker, GA , ed. Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology, Volume 2, Organ Systems. Humana Press; 2017:695–762.
Google Scholar |
Crossref45.
Wessels, U, Zadak, M, Reiser, A, et al. Immunogenicity testing of therapeutic antibodies in ocular fluids after intravitreal injection. Bioanalysis. 2018;10(11):803–814.
Google Scholar |
Crossref |
Medline46.
Lorget, F, Parenteau, A, Carrier, M, et al. Characterization of the pH and temperature in the rabbit, pig, and monkey eye: key parameters for the development of long-acting delivery ocular strategies. Mol Pharm. 2016;13(9):2891–2896.
Google Scholar |
Crossref |
Medline47.
Sorden, SD, Larsen, T, McPherson, LE, Turner, OC, Carroll, EE, Sharma, AK. Spontaneous background and procedure-related microscopic findings and common artifacts in ocular tissues of laboratory animals in ocular studies. Toxicol Pathol. November 2020. doi:10.1177/0192623320966244.
Google Scholar48.
Latendresse, JR, Warbrittion, AR, Jonassen, H, Creasy, DM. Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol. 2002;30(4):524–533.
Google Scholar |
SAGE Journals |
ISI49.
Ramos, MF, Baker, J, Atzpodien, EA, et al. Nonproliferative and proliferative lesions of the rat and mouse special sense organs (ocular [eye and glands]), olfactory, and otic). Toxicol Pathol. 2018;31(3 suppl):97S–214 S.
Google Scholar |
Crossref50.
Schafer, K, Render, J. Toxicologic pathology of the eye: histologic preparation and alterations of the anterior segment. In: Weir, A, Collins, M, eds. Assessing Ocular Toxicology in Laboratory Animals. Molecular and Integrative Toxicology. Humana Press; 2012:159–217.
Google Scholar |
Crossref51.
Atzpodien, EA, Jacobsen, B, Funk, J, et al. Advanced clinical imaging and tissue-based biomarkers of the eye for toxicology studies in minipigs. Toxicol Pathol. 2016;44(3):398–413.
Google Scholar |
SAGE Journals |
ISI52.
Chidlow, G, Daymon, M, Wood, JPM, Casson, RJ. Localization of a wide-ranging panel of antigens in the rat retina by immunohistochemistry: comparison of Davidson’s solution and formalin as fixatives. J Histochem Cytochem. 2011;59(10):884–898.
Google Scholar |
SAGE Journals |
ISI53.
Stradleigh, TW, Ishida, AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res. 2015;48:181–202.
Comments (0)