Effect of dose, dosing intervals, and hypoxic stress on the reversal of pulmonary hypertension by mesenchymal stem cell extracellular vesicles

1. Humbert, M, Guignabert, C, Bonnet, S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 2019; 53: 1–14.
Google Scholar | Crossref2. Benza, RL, Miller, DP, Barst, RJ, et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest 2012; 142: 448–456.
Google Scholar | Crossref | Medline | ISI3. Thenappan, T, Shah, SJ, Rich, S, et al. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 2010; 35: 1079–1087.
Google Scholar | Crossref | Medline | ISI4. Shi, M, Liu, ZW, Wang, FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 2011; 164: 1–8.
Google Scholar | Crossref | Medline | ISI5. Gebler, A, Zabel, O, Seliger, B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 2012; 18: 128–134.
Google Scholar | Crossref6. Li, T, Wu, Y. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res 2011; 2011: 353878.
Google Scholar | Crossref | Medline7. da Silva, CL, Goncalves, R, dos Santos, F, et al. Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+, CD34+CD38− and early lymphoid CD7+ cells. J Tissue Eng Regen Med 2010; 4: 149–158.
Google Scholar | Crossref8. Bernardo, ME, Fibbe, WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013; 13: 392–402.
Google Scholar | Crossref | Medline | ISI9. Kanki-Horimoto, S, Horimoto, H, Mieno, S, et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006; 114: I181–I185.
Google Scholar | Crossref | Medline | ISI10. Aliotta, JM, Keaney, PJ, Warburton, RR, et al. Marrow cell infusion attenuates vascular remodeling in a murine model of monocrotaline-induced pulmonary hypertension. Stem Cells Dev 2009; 18: 773–782.
Google Scholar | Crossref11. Chen, CM, Lin, W, Huang, LT, et al. Human mesenchymal stem cells ameliorate experimental pulmonary hypertension induced by maternal inflammation and neonatal hyperoxia in rats. Oncotarget 2017; 8: 82366–82375.
Google Scholar | Crossref | Medline12. de Mendonca, L, Felix, NS, Blanco, NG, et al. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther 2017; 8: 220.
Google Scholar | Crossref | Medline13. Alencar, AKN, Pimentel-Coelho, PM, Montes, GC, et al. Human mesenchymal stem cell therapy reverses Su5416/hypoxia-induced pulmonary arterial hypertension in mice. Front Pharmacol 2018; 9: 1395.
Google Scholar | Crossref | Medline14. Liang, OD, Mitsialis, SA, Chang, MS, et al. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 2011; 29: 99–107.
Google Scholar | Crossref | Medline | ISI15. Meldolesi, J. Exosomes and ectosomes in intercellular communication. Curr Biol 2018; 28: R435–R444.
Google Scholar | Crossref | Medline16. Paolicelli, RC, Bergamini, G and, Rajendran, L. Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 2019; 405: 148–157.
Google Scholar | Crossref17. Maia, J, Caja, S, Strano Moraes, MC, et al. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 2018; 6: 18.
Google Scholar | Crossref | Medline18. van der Vorst, EPC, de Jong, RJ and, Donners, M. Message in a microbottle: modulation of vascular inflammation and atherosclerosis by extracellular vesicles. Front Cardiovasc Med 2018; 5: 2.
Google Scholar | Crossref | Medline19. Phinney, DG, Di Giuseppe, M, Njah, J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6: 8472.
Google Scholar | Crossref | Medline20. Morrison, TJ, Jackson, MV, Cunningham, EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 2017; 196: 1275–1286.
Google Scholar | Crossref21. Willis, GR, Fernandez-Gonzalez, A, Anastas, J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 2018; 197: 104–116.
Google Scholar | Crossref | Medline22. Klinger, JR, Pereira, M, Del Tatto, M, et al. Mesenchymal stem cell extracellular vesicles reverse Sugen/hypoxia pulmonary hypertension in rats. Am J Respir Cell Mol Biol 2020; 62: 577–587.
Google Scholar | Crossref | Medline23. Lee, C, Mitsialis, SA, Aslam, M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 2012; 126: 2601–2611.
Google Scholar | Crossref | Medline | ISI24. Hogan, SE, Rodriguez Salazar, MP, Cheadle, J, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316: L723–L737.
Google Scholar | Crossref | Medline25. Collino, F, Lopes, JA, Correa, S, et al. Adipose-derived mesenchymal stromal cells under hypoxia: changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem 2019; 52: 1463–1483.
Google Scholar | Medline26. Lo Sicco, C, Reverberi, D, Balbi, C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6: 1018–1028.
Google Scholar | Crossref | Medline27. Aliotta, JM, Pereira, M, Wen, S, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 2016; 110: 319–330.
Google Scholar | Crossref | Medline | ISI28. Wen, S, Dooner, M, Cheng, Y, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 2016; 30: 2221–2231.
Google Scholar | Crossref | Medline29. Chen, JY, An, R, Liu, ZJ, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 2014; 35: 1121–1128.
Google Scholar | Crossref | Medline30. Liu, Z, Liu, J, Xiao, M, et al. Mesenchymal stem cell-derived microvesicles alleviate pulmonary arterial hypertension by regulating renin-angiotensin system. J Am Soc Hypertens 2018; 12: 470–478.
Google Scholar | Crossref | Medline31. Zhang, Z, Ge, L, Zhang, S, et al. The protective effects of MSC-EXO against pulmonary hypertension through regulating Wnt5a/BMP signalling pathway. J Cell Mol Med 2020; 24: 13938–13948.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif