Effect of placement angle, diameter, length and bone density on the pull-out strength of orthodontic mini-implants: An in vitro study

Abohabib, MA, Fayed, MM, Labib, AH (2018) Effects of low-intensity laser therapy on the stability of orthodontic mini-implants: a randomised controlled clinical trial. Journal of Orthodontics 45: 149–156.
Google Scholar | SAGE Journals Aparicio, C, Lang, NP, Rangert, B (2006) Validity and clinical significance of biomechanical testing of implant/bone interface. Clinical and Oral Implants Research 17: 2–7.
Google Scholar | Crossref | Medline Beckwith, FR, Ackerman, RJ, Cobb, CM, Tira, DE (1999) An evaluation of factors affecting duration of orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics 115: 439–447.
Google Scholar | Crossref | Medline Carano, A, Lonardo, P, Velo, S, Incorvati, C (2005) Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Progress in Orthodontics 6: 82–97.
Google Scholar | Medline Chatzigianni, A, Keilig, L, Reimann, S, Eliades, T, Bourauel, C (2011) Effect of mini-implant length and diameter on primary stability under loading with two force levels. European Journal of Orthodontics 33: 381–387.
Google Scholar | Crossref | Medline Chen, CH, Chang, CS, Hsieh, CH, Tseng, YC, Shen, YS, Huang, IY, et al (2006) The use of microimplants in orthodontic anchorage. Journal of Oral and Maxillofacial Surgery 64: 1209–1213.
Google Scholar | Crossref | Medline Chen, Y, Kyung, HM, Zhao, WT, Yu, WJ (2009) Critical factors for the success of orthodontic mini-implants: a systematic review. American Journal of Orthodontics and Dentofacial Orthopedics 135: 284–291.
Google Scholar | Crossref | Medline Creekmore, TD, Eklund, MK (1983) The possibility of skeletal anchorage. Journal of Clinical Orthodontics 17: 266–269.
Google Scholar | Medline Gainsforth, BL, Higley, LB (1945) A study of orthodontic anchorage possibilities in basal bone. American Journal of Orthodontics and Oral Surgery 31: 406–417.
Google Scholar | Crossref Gedrange, T, Bourauel, C, Köbel, C, Harzer, W (2003) Three-dimensional analysis of endosseous palatal implants and bones after vertical, horizontal, and diagonal force application. European Journal of Orthodontics 25: 109–115.
Google Scholar | Crossref | Medline Holmgren, EP, Seckinger, RJ, Kilgren, LM, Mante, F (1998) Evaluating parameters of osseointegrated dental implants using finite element analysis - a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology 24: 80–88.
Google Scholar | Crossref | Medline Jing, Z, Wu, Y, Jiang, W, Zhao, L, Jing, D, Zhang, N (2016) Factors affecting the clinical success rate of miniscrew implants for orthodontic treatment. International Journal of Oral & Maxillofacial Implants 31: 835–841.
Google Scholar | Crossref | Medline Kanomi, R (1997) Mini-implant for orthodontic anchorage. Journal of Clinical Orthodontics 11: 763–767.
Google Scholar Kim, YK, Kim, YJ, Yun, P, Kim, JW (2009) Effects of the taper shape, dual- thread, and length on the mechanical properties of mini-implants. Angle Orthodontist 79: 908–914.
Google Scholar | Crossref | Medline Lim, SA, Cha, JY, Hwang, CJ. (2008) Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthodontist 78: 234–240.
Google Scholar | Crossref | Medline Meredith, N, Alleyne, D, Cawley, P (1996) Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clinical and Oral Implants Research 7: 261–267.
Google Scholar | Crossref | Medline Meira, TB, Tanaka, OM (2013) Insertion torque, pull-out strength and cortical bone thickness in contact with orthodontic mini-implants at different insertion angles. European Journal of Orthodontics 35: 766–771.
Google Scholar | Crossref | Medline Migliorati, M, Signori, A, Silvestrini-Biavat, A (2012) Temporary anchorage device stability: an evaluation of thread shape factor. European Journal of Orthodontics 34: 582–586.
Google Scholar | Crossref | Medline Miyawaki, S, Koyama, I, Inoue, M, Mishima, K, Sugahara, T, Takano-Yamamoto, T (2003) Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics 124: 373–378.
Google Scholar | Crossref | Medline Mizrahi, E, Mizrahi, B (2007) Mini-screw implants (temporary anchorage devices): orthodontic and pre-prosthetic applications. Journal of Orthodontics 34: 80–94.
Google Scholar | SAGE Journals Motoyoshi, M, Yoshida, T, Ono, A, Shimizu, N (2007) Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. International Journal of Oral & Maxillofacial Implants 22: 779–784.
Google Scholar | Medline Pickard, MB, Dechow, P, Rossouw, PE, Buschang, PE (2010) Effects of miniscrew orientation on implant stability and resistance to failure. American Journal of Orthodontics and Dentofacial Orthopedics 137: 91–99.
Google Scholar | Crossref | Medline Reynders, R, Ronchi, L, Bipat, S (2009) Mini-implants in orthodontics: a systematic review of the literature. American Journal of Orthodontics and Dentofacial Orthopedics 135:564.e1–19.
Google Scholar | Crossref | Medline Roberts, WE, Helm, FR, Marshall, KJ, Gongloff, RK (1989) Rigid endosseous implants for orthodontic and orthopaedic anchorage. Angle Orthodontist 59: 247–256.
Google Scholar | Medline Salmória, KK, Tanaka, OM, Guariza-Filho, O, Camargo, ES, de Souza, LT, Maruo, H (2008) Insertional torque and axial pull-out strength of mini-implants in mandibles of dogs. American Journal of Orthodontics and Dentofacial Orthopedics 133: 790.e15–22.
Google Scholar | Crossref | Medline Sripradha, S, Pandian, S (2018) Mini implants in orthodontics-a review. Research Journal of Pharmacy and Technology 11: 2621–2624.
Google Scholar | Crossref Uesugi, S, Kokai, S, Kanno, Z, Ono, T (2017) Prognosis of primary and secondary insertions of orthodontic miniscrews: what we have learned from 500 implants. American Journal of Orthodontics and Dentofacial Orthopedics 152: 224–231.
Google Scholar | Crossref | Medline Wahl, N (2005) Orthodontics in 3 millennia Chapter 2: Entering the modern era. American Journal of Orthodontics and Dentofacial Orthopedics 127: 510–515.
Google Scholar | Crossref | Medline Watanabe, T, Miyazawa, K, Fujiwara, T, Kawaguchi, M, Tabuchi, M, Goto, S (2017) Insertion torque and Periotest values are important factors predicting outcome after orthodontic miniscrew placement. American Journal of Orthodontics and Dentofacial Orthopedics 152: 483–488.
Google Scholar | Crossref | Medline Wehrbein, H, Merz, BR (1998) Aspects of the use of endosseous palatal implants in orthodontic therapy. Journal of Esthetic Dentistry 10: 315–324.
Google Scholar | Crossref | Medline Wilmes, B, Rademacher, C, Olthoff, G, Drescher, D (2006) Parameters affecting primary stability of orthodontic mini-implants. Journal of Orofacial Orthopedics 67: 162–174.
Google Scholar | Crossref | Medline Wilmes, B, Su, YY, Drescher, D (2008) Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthodontist 78: 1065–1070.
Google Scholar | Crossref | Medline Wu, J, Wang, H, Chen, C, Lu, P, Lai, S, Lee, K, et al (2011) Pullout strengths of orthodontic palatal mini-implants tested in vitro. Journal of Dental Sciences 6: 200–204.
Google Scholar | Crossref Young, K, Melrose, CA, Harrison, JE (2007) Skeletal anchorage systems in orthodontics: absolute anchorage. A dream or reality? Journal of Orthodontics 34: 101–110.
Google Scholar | SAGE Journals

Comments (0)

No login
gif