1.
Test Guideline 416 . OECD Guideline for Testing of Chemicals. Two-Generation Reproduction Toxicity. 2001.
Google Scholar2.
Test Guideline 443 . OECD Guideline for Testing of Chemicals. Two-Generation Reproduction Toxicity. 2018.
Google Scholar3.
Test Guideline 424 . OECD Guideline for Testing of Chemicals. Neurotoxicity Study in Rodents. 1997.
Google Scholar4.
Test Guideline 426 . OECD Guideline for Testing of Chemicals. Neurotoxicity Study in Rodents. 2007.
Google Scholar5.
Health Effects Test Guidelines OPPTS 870.6200 . Neurotoxicity Screening Battery. 1996.
Google Scholar6.
Health Effects Test Guidelines OPPTS 870.6300 . Developmental Neurotoxicity Study. 1998.
Google Scholar7.
Kaufmann, W, Groters, S. Developmental neuropathology in DNT-studies—a sensitive tool for the detection and characterization of developmental neurotoxicants. Reprod Toxicol. 2006;22(2):196-213.
Google Scholar |
Crossref |
Medline8.
Bolon, B, Garman, R, Jensen, K, Krinke, G, Stuart, B; Ad Hoc Working Group of the STP Scientific and Regulatory Policy Committee . A best practices approach to neuropathologic assessment in developmental neurotoxicity testing—for today. Toxicol Pathol. 2006;34(3):296-313.
Google Scholar |
SAGE Journals |
ISI9.
Garman, RH, Li, AA, Kaufmann, W, Auer, RN, Bolon, B. Recommended methods for brain processing and quantitative analysis in rodent developmental neurotoxicity studies. Toxicol Pathol. 2016;44(1):14-42.
Google Scholar |
SAGE Journals |
ISI10.
Spencer, PS, Kisby, GE, Palmer, VS, Obendorf, P. Cycasin, methylazoxymethanol and related compounds. In: Spencer, PS, Schaumburg, HH, eds. Experimental and Clinical Neurotoxicology. 2nd ed. Oxford University Press; 2000:436-447.
Google Scholar11.
Food and Drug Administration Modernization Act (FDAMA) . In: Congress, US , ed. 21. Vol Public Law 105-115, 1997.
Google Scholar12.
Food and Drug Administration Modernization Act (FDAMA ). In: Congress, US , ed. 21. Vol Public Law 107-109, 2002.
Google Scholar13.
Food and Drug Administration Modernization Act (FDAMA ). In: Congress, US , ed. 21. Vol Publlic Law 108 - 155, 2003.
Google Scholar14.
PREA and BPCA: Spurring Pediatric Drug Development . In: Pharmaceutical Research and Manufacturers of America (PhRMA); February 2020.
Google Scholar15.
Food and Drug Administration (FDA ). Guidance for Industry: Nonclinical Safety Evaluation of Pediatric Drug Products. Food and Drug Administration (FDA); 2006.
Google Scholar16.
European Medicines Agency (EMA) . Guideline on the Need for Nonclinical Testing in Juvenile Animals on Human Pharmaceuticals for Pediatric Indications. European Medicines Agency (EMA); 2008.
Google Scholar17.
Japanese Ministry of Health Labour and Welfare. Guideline on non-clinical safety studies in juvenile animals for pediatric drug development. 2012.
Google Scholar18.
ICH . Safety guidelines. 2017.
Google Scholar19.
ICH E11 Guideline : Clinical investigation of medicinal products in the pediatric population. August, 2017.
Google Scholar20.
ICH S9 . Guidance for industry: S9 nonclinical evaluation for anticancer pharmaceuticals. March 2010.
Google Scholar21.
Gershanik, J, Boecler, B, Ensley, H, McCloskey, S, George, W. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med. 1982;307(22):1384-1388.
Google Scholar |
Crossref |
Medline |
ISI22.
Schmitt, G . Safety of excipients in pediatric formulations—a call for toxicity studies in juvenile animals? Children (Basel). 2015;2(2):191-197.
Google Scholar |
Medline23.
Belayneh, A, Tadese, E, Molla, F. Safety and biopharmaceutical challenges of excipients in off-label pediatric formulations. Int J Gen Med. 2020;13:1051-1066.
Google Scholar |
Crossref |
Medline24.
Kearns, GL, Abdel-Rahman, SM, Alander, SW, Blowey, DL, Leeder, JS, Kauffman, RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157-1167.
Google Scholar |
Crossref |
Medline |
ISI25.
Hoberman, AM, Lewis, EM. Pediatric Non-Clinical Drug Testing: Principles, Requirements and Practices. Wiley; 2012.
Google Scholar |
Crossref26.
ICH S11 : Nonclinical safety testing in support of development of paediatric medicines. 2020.
Google Scholar27.
Kumar, S, Hoffman, SJ, Samadfam, R, et al. The effect of rosiglitazone on bone mass and fragility is reversible and can be attenuated with alendronate. J Bone Miner Res. 2013;28(7):1653-1665.
Google Scholar |
Crossref |
Medline28.
Castillo, AB, Tarantal, AF, Watnik, MR, Martin, RB. Tenofovir treatment at 30 mg/kg/day can inhibit cortical bone mineralization in growing rhesus monkeys (Macaca mulatta). J Orthop Res. 2002;20(6):1185-1189.
Google Scholar |
Crossref |
Medline29.
Fox, J, Newman, MK, Turner, CH, Guldberg, RE, Varela, A, Smith, SY. Effects of treatment with parathyroid hormone 1-84 on quantity and biomechanical properties of thoracic vertebral trabecular bone in ovariectomized rhesus monkeys. Calcif Tissue Int. 2008;82(3):212-220.
Google Scholar |
Crossref |
Medline30.
Li, X, Ominsky, MS, Warmington, KS, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578-588.
Google Scholar |
Crossref |
Medline31.
Boyce, RW, Varela, A, Chouinard, L, et al. Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period. Bone. 2014;64:314-325.
Google Scholar |
Crossref |
Medline |
ISI32.
Cui, GL, Syversen, U, Zhao, CM, Chen, D, Waldum, HL. Long-term omeprazole treatment suppresses body weight gain and bone mineralization in young male rats. Scand J Gastroenterol. 2001;36(10):1011-1015.
Google Scholar |
Crossref |
Medline33.
Varela, A, Jolette, J. Bone toolbox: biomarkers, imaging tools, biomechanics, and histomorphometry. Toxicol Pathol. 2018;46(5):511-529.
Google Scholar |
SAGE Journals |
ISI34.
Gunson, D, Gropp, KE, Varela, A. Bone and joints. In: Haschek, WM, Rousseaux, CG, Wallig, MA, eds. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Vol 3. 3rd ed. Academic Press (Elsevier); 2013:2761-2858.
Google Scholar |
Crossref35.
Gasser, JA, Kneissel, M. Bone physiology and biology. In: Smith, SY, Varela, A, Samadfam, R, eds. Bone Toxicology. Humana Press; 2017.
Google Scholar |
Crossref36.
Zoetis, T, Hurtt, ME. Species comparison of anatomical and functional renal development. Birth Defects Res B Dev Reprod Toxicol. 2003;68(2):111-120.
Google Scholar |
Crossref |
Medline |
ISI37.
Jolette, J, Wilker, CE, Smith, SY, et al. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1-84 in a 2-year study in Fischer 344 rats. Toxicol Pathol. 2006;34(7):929-940.
Google Scholar |
SAGE Journals |
ISI38.
Parfitt, AM, Drezner, MK, Glorieux, FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 1987;2(6):595-610.
Google Scholar |
Crossref |
Medline |
ISI39.
Dempster, DW, Compston, JE, Drezner, MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 2013;28(1):2-17.
Google Scholar |
Crossref |
Medline |
ISI40.
Turner, CH, Burr, DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595-608.
Google Scholar |
Crossref |
Medline41.
Turner, CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporosis Int. 2002;13(2):97-104.
Google Scholar |
Crossref |
Medline42.
Parker, GA, Picut, C. Developmental assessments of the nervous system. In: Hoberman, AM, Lewis, EM, eds. Pediatric Non-Clinical Drug Testing: Principles, Requirements, and Practices. John Wiley & Sons; 2022 (in press).
Google Scholar43.
Clancy, B, Finlay, BL, Darlington, RB, Anand, KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931-937.
Google Scholar |
Crossref |
Medline44.
Clancy, B, Charvet, C, Darlington, RB, Finlay, BL, Workman, A. Translating time (across developing mammalian brains). Published 2013. Accessed September 11, 2021.
http://translatingtime.net/.
Google Scholar45.
Rice, D, Barone, S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(suppl 3):511-533.
Google Scholar |
Crossref |
Medline |
ISI46.
Rodier, PM . Developmental neurotoxicology. Toxicol Pathol. 1990;18(1 pt 2):89-95.
Google Scholar |
SAGE Journals |
ISI47.
Rodier, PM . Vulnerable periods and processes during central nervous system development. Environ Health Perspect. 1994;102(suppl 2):121-124.
Google Scholar |
Crossref |
Medline |
ISI48.
Fawcett, LB, Brent, RL. Pathogenesis of abnormal development. In: Hood, RD , ed. Developmental and Reproductive Toxicology: A Practical Approach. CRC Press (Taylor & Francis); 2006:61-92.
Google Scholar49.
Fisher, JE, Ravindran, A, Elayan, I. CDER experience with juvenile animal studies for CNS drugs. Int J Toxicol. 2019;38(2):88-95.
Google Scholar |
SAGE Journals |
ISI50.
van der Laan, JW, van Malderen, K, de Jager, N, et al. Evaluation of juvenile animal studies for pediatric CNS-targeted compounds: a regulatory perspective. Int J Toxicol. 2019;38(6):456-475.
Google Scholar |
SAGE Journals |
ISI51.
Food and Drug Administration (FDA) . Redbook. 2000. Accessed September 11, 2021.
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-other-stakeholders-redbook-2000#TOC Google Scholar52.
Bolon, B, Bradley, A, Butt, MT, Jensen, K, Krinke, G. Compilation of international regulatory guidance documents for neuropathology assessment during nonclinical general toxicity and specialized neurotoxicity studies. Toxicol Pathol. 2011;39(1):92-96.
Google Scholar |
SAGE Journals |
ISI53.
Kim, NN, Parker, RM, Weinbauer, GF, Remick, AK, Steinbach, T. Points to consider in designing and conducting juvenile toxicology studies. Int J Toxicol. 2017;36(4):325-339.
Google Scholar |
SAGE Journals |
ISI54.
Bolon, B, Dostal, LA, Garman, RH. Neuropathology evaluation in juvenile toxicity studies in rodents: comparison of developmental neurotoxicity studies for chemicals with juvenile animal studies for pediatric pharmaceutical. Toxicol Pathol. 2021;49(8).
Google Scholar55.
ICH M3(R2) . Guidance for Industry. M3(R2) Nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. 2010.
Google Scholar56.
Jortner, BS . The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology. 2006;27(4):628-634.
Google Scholar |
Crossref |
Medline57.
Bolon, B, Garman, RH, Pardo, ID, et al. STP position paper: recommended practices for sampling and processing the nervous system (brain, spinal cord, nerve, and eye) during nonclinical general toxicity studies. Toxicol Pathol. 2013;41(7):1028-1048.
Google Scholar |
SAGE Journals |
ISI58.
Bolon, B, Krinke, G, Butt, MT, et al. STP position paper: recommended best practices for sampling, processing, and analysis of the peripheral nervous system (nerves and somatic and autonomic ganglia) during nonclinical toxicity studies. Toxicol Pathol. 2018;46(4):372-402.
Google Scholar |
SAGE Journals |
ISI59.
Bolon, B . Regulatory forum opinion piece*: effective brain trimming for regulatory-type nonclinical toxicity studies. Toxicol Pathol. 2018;46(2):115-120.
Google Scholar |
SAGE Journals |
ISI60.
Rao, DB, Little, PB, Malarkey, DE, Herbert, RA, Sills, RC. Histopathological evaluation of the nervous system in national toxicology program rodent studies: a modified approach. Toxicol Pathol. 2011;39(3):463-470.
Google Scholar |
SAGE Journals |
ISI61.
Pardo, ID, Garman, RH, Weber, K, Bobrowski, WF, Hardisty, JF, Morton, D. Technical guide for nervous system sampling of the cynomolgus monkey for general toxicity studies. Toxicol Pathol. 2012;40(4):624-636.
Google Scholar |
SAGE Journals |
Comments (0)