1. Wang, C, Horby, PW, Hayden, FG, Gao, GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473. doi:
10.1016/S0140-6736(20)30185-9 Google Scholar |
Crossref |
Medline2. Phelan, AL, Katz, R, Gostin, LO. The novel coronavirus originating in Wuhan, China. JAMA. 2020;323(8):709. doi:
10.1001/jama.2020.1097 Google Scholar |
Crossref |
Medline3. Naming the coronavirus disease (COVID-19) and the virus that causes it. Accessed November 20, 2020.
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it Google Scholar4. Li, Q, Guan, X, Wu, P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi:
10.1056/NEJMoa2001316 Google Scholar |
Crossref |
Medline5. He, X, Lau, EHY, Wu, P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–675. doi:
10.1038/s41591-020-0869-5 Google Scholar |
Crossref |
Medline6. Xu, X-W, Wu, X-X, Jiang, X-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Br Med J. 2020;368(8235):1–7. doi:
10.1136/bmj.m606 Google Scholar |
Crossref7. Huang, C, Wang, Y, Li, X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. doi:
10.1016/s0140-6736(20)30183-5 Google Scholar |
Crossref |
Medline8. Guan, W-J, Ni, Z-Y, Hu, Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:
10.1056/NEJMoa2002032 Google Scholar |
Crossref |
Medline9. Livingston, E, Bucher, K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020;323(14):1335. doi:
10.1001/jama.2020.4344 Google Scholar |
Crossref |
Medline10. Jiang, F, Deng, L, Zhang, L, Cai, Y, Cheung, CW, Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020;35(5):1545–1549. doi:
10.1007/s11606-020-05762-w Google Scholar |
Crossref |
Medline11. Yang, X, Yu, Y, Xu, J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020;8(5):475–481. doi:
10.1016/s2213-2600(20)30079-5 Google Scholar |
Crossref |
Medline12. Llitjos, J-F, Leclerc, M, Chochois, C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–1746. doi:
10.1111/jth.14869 Google Scholar |
Crossref |
Medline13. Chen, H, Guo, J, Wang, C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809–815. doi:
10.1016/S0140-6736(20)30360-3 Google Scholar |
Crossref |
Medline14. Coronavirus disease (COVID-19)—World Health Organization . Accessed May 18, 2021.
https://www.who.int/emergencies/diseases/novel-coronavirus-2019 Google Scholar15. Croda, J, Oliveira, Wd, Frutuoso, RL, et al. COVID-19 in Brazil: advantages of a socialized unified health system and preparation to contain cases. Rev Soc Bras Med Trop. 2020;53:e20200167. doi:
10.1590/0037-8682-0167-2020 https://rsbmt.org.br/2020/04/08/covid-19-in-brazil-advantages-of-a-socialized-unified-health-system-and-preparation-to-contain-cases/ Google Scholar |
Crossref |
Medline16. COVID Live Update: 164,720,540 Cases and 3,413,462 Deaths from the Coronavirus—Worldometer. Accessed May 18, 2021.
www.worldometers.info/coronavirus/ Google Scholar17. Coronavirus (COVID-19) Vaccinations . Accessed May 18, 2021.
https://ourworldindata.org/covid-vaccinations Google Scholar18. SRAG 2020—Banco de Dados de Síndrome Respiratória Aguda Grave—incluindo dados da COVID-19—Open Data. Accessed May 18, 2021.
https://opendatasus.saude.gov.br/dataset/bd-srag-2020 Google Scholar19. Estimativas da População . Accessed November 20, 2020.
https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&%3Bt=o-que-e&t=o-que-e Google Scholar20. Coronavírus Brasil . Accessed May 18, 2021.
https://covid.saude.gov.br/ Google Scholar21. R: A Language and Environment for Statistical Computing; 2019.
Google Scholar22. Divisão do Brasil em mesorregiões e microrregiões geográficas; 1992.
https://books.google.com/books/about/Divis%C3%A3o_do_Brasil_em_mesorregi%C3%B5es_e_mi.html?hl=&id=E660AAAAIAAJ Google Scholar23. Bailey, TC, Gatrell, AC. Interactive spatial data analysis. Halsted Press; 1995.
https://books.google.com/books/about/Interactive_Spatial_Data_Analysis.html?hl=&id=qx-FQgAACAAJ Google Scholar24. Anselin, L . Local indicators of spatial association-LISA. Geogr Anal. 1995;27(2):93–115.
doi.org/10.1111/j.1538-4632.1995.tb00338.x Google Scholar |
Crossref |
ISI25. Anselin, L . The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In: Fischer, M, Scholten, H, Unwin, D, eds. Spatial analytical perspectives on GIS. Taylor and Francis; 1996; 111–125.
Google Scholar26. Dahal, S, Mizumoto, K, Rothenberg, R, Chowell, G. Investigating spatial variability in COVID-19 pandemic severity across 19 geographic areas, Spain, 2020. doi:
10.1101/2020.04.14.20065524 Google Scholar |
Crossref27. Consolazio, D, Murtas, R, Tunesi, S, Gervasi, F, Benassi, D, Russo, AG. Assessing the impact of individual characteristics and neighborhood socioeconomic status during the COVID-19 pandemic in the provinces of Milan and Lodi. Int J Health Serv. 2021;51(3):311–324. Published online March 2, 2021. doi:
10.1177/0020731421994842 Google Scholar |
SAGE Journals |
ISI28. Alshukry, A, Abbas, MB, Ali, Y, et al. Clinical characteristics and outcomes of diabetic COVID-19 patients in Kuwait. medRxiv. 2020;15(11):1–16. Published online October 11, 2020.08.20. doi:
10.1101/2020.08.20.20178525 Google Scholar |
Crossref29. de Souza, WM, Buss, LF, da Silva Candido, D, et al. Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nature Human Behaviour. 2020;4(8):856–865. doi:
10.1038/s41562-020-0928-4 Google Scholar |
Crossref |
Medline30. Moreira, RdS . Latent class analysis of COVID-19 symptoms in Brazil: results of the PNAD-COVID19 survey. Cad Saúde Pública. 2021;37(1):1–14. doi:
10.1590/0102-311×00238420 Google Scholar |
Crossref31. Saffary, T, Adegboye, OA, Gayawan, E, Elfaki, F, Kuddus, MA, Saffary, R. Analysis of COVID-19 cases’ spatial dependence in US counties reveals health inequalities. Front Public Health. 2020;8(579190):1–10. doi:
10.3389/fpubh.2020.579190 Google Scholar |
Crossref |
Medline32. Docherty, AB, Harrison, EM, Green, CA, et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. Br Med J. 2020;369(8250):1–12. doi:
10.1136/bmj.m1985 Google Scholar |
Crossref33. Ortiz-Prado, E, Simbaña-Rivera, K, Barreno, LG, et al. Epidemiological, socio-demographic and clinical features of the early phase of the COVID-19 epidemic in Ecuador. PLoS Negl Trop Dis. 2021;15(1):e0008958. doi:
10.1371/journal.pntd.0008958 Google Scholar |
Crossref |
Medline34. Alshukry, A, Ali, H, Ali, Y, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) patients in Kuwait. PLoS One. 2020;15(11):e0242768. doi:
10.1371/journal.pone.0242768 Google Scholar |
Crossref |
Medline35. Franch-Pardo, I, Napoletano, BM, Rosete-Verges, F, Billa, L. Spatial analysis and GIS in the study of COVID-19. A review. Sci Total Environ. 2020;739:(140033). doi:
10.1016/j.scitotenv.2020.140033 Google Scholar |
Crossref |
Medline36. Waller, LA, Gotway, CA. Applied spatial statistics for public health data. John Wiley & Sons; 2004.
https://play.google.com/store/books/details?id=OuQwgShUdGAC Google Scholar |
Crossref
Comments (0)