Afkarian, M., Katz, R., Bansal, N., Correa, A., Kestenbaum, B., Himmelfarb, J., de Boer, I. H., Young, B. (2016). Diabetes, kidney disease, and cardiovascular outcomes in the Jackson heart study. Clinical Journal of the American Society of Nephrology: CJASN, 11(8), 1384–1391.
https://doi.org/10.2215/CJN.13111215 Google Scholar
Akirov, A., Shochat, T., Dotan, I., Diker-Cohen, T., Gorshtein, A., Shimon, I. (2019). Glycemic variability and mortality in patients hospitalized in general surgery wards. Surgery, 166(2), 184–192.
https://doi.org/S0039-6060(19)30114-X Google Scholar
American Diabetes Association . (2021). Standards of medical care in diabetes-2021. Diabetes Care, 44(Suppl. 1), S1–S2.
Google Scholar |
Medline
Campbell, L., Pepper, T., Shipman, K. (2019). HbA1c: A review of non-glycaemic variables. Journal of Clinical Pathology, 72(1), 12–19.
https://doi.org/10.1136/jclinpath-2017-204755 Google Scholar
Casey, J. A., Schwartz, B. S., Stewart, W. F., Adler, N. E. (2016). Using electronic health records for population health research: A review of methods and applications. Annual Review of Public Health, 37, 61–81.
https://doi.org/10.1146/annurev-publhealth-032315-021353 Google Scholar
Ceriello, A., Monnier, L., Owens, D. (2019). Glycaemic variability in diabetes: Clinical and therapeutic implications. The Lancet, 7(3), 221–230.
https://doi.org/10.1016/S2213-8587(18)30136-0 Google Scholar
Davis, J., Penha, J., Mbowe, O., Taira, D. A. (2017). Prevalence of single and multiple leading causes of death by race/ethnicity among US adults aged 60 to 79 years. Preventing Chronic Disease, 14, E101.
https://doi.org/10.5888/pcd14.160241 Google Scholar
Dybala, M., Olehnik, S., Fowler, J., Golab, K., Millis, J. M., Golebiewska, J., Bachul, P., Witkowski, P., Hara, M. (2019). Pancreatic beta cell/islet mass and body mass index. I slets, 11(1), 1–9.
https://doi.org/10.1080/19382014.2018.1557486 Google Scholar
Echouffo-Tcheugui, J. B., Zhao, S., Brock, G., Matsouaka, R. A., Kline, D., Joseph, J. J. (2019). Visit-to-visit glycemic variability and risks of cardiovascular events and all-cause mortality: The ALLHAT study. Diabetes Care, 42(3), 486–493.
https://doi.org/10.2337/dc18-1430 Google Scholar
Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Brooks/Cole Publishing.
Google Scholar
Fayyaz, B., Rehman, H. J., Minn, H. (2019). Interpretation of hemoglobin A1C in primary care setting. Journal of Community Hospital Internal Medicine Perspectives, 9(1), 18–21.
https://doi.org/10.1080/20009666.2018.1559432 Google Scholar
Figueira, F. R., Umpierre, D., Bock, P. M., Waclawovsky, G., Guerra, A. P., Donelli, A., Andrades, M., Casali, K. R., Schaan, B. D. (2019). Effect of exercise on glucose variability in healthy subjects: Randomized crossover trial. Biology of Sport, 36(2), 141–148.
https://doi.org/10.5114/biolsport.2019.83006 Google Scholar
Garber, A. J., Abrahamson, M. J., Barzilay, J. I., Blonde, L., Bloomgarden, Z. T., Bush, M. A., Dagogo-Jack, S., DeFronzo, R. A., Einhorn, D., Fonseca, V. A., Garber, J. R., Garvey, W. T., Grunberger, G., Handelsman, Y., Hirsch, I. B., Jellinger, P. S., McGill, J. B., Mechanick, J. I., Rosenblit, P. D., Umpierrez, G. E. (2017). Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm—2017 executive summary. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 23(2), 207–238.
https://doi.org/10.4158/EP161682.CS Google Scholar
Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., Yee, D. (2010). Diabetes and cancer: A consensus report. Diabetes Care, 33(7), 1674–1685.
https://doi.org/10.2337/dc10-0666 Google Scholar
Gonzalez, N., Prieto, I., Del Puerto-Nevado, L., Portal-Nunez, S., Ardura, J. A., Corton, M., Fernandez-Fernandez, B., Aguilera, O., Gomez-Guerrero, C., Mas, S., Moreno, J. A., Ruiz-Ortega, M., Sanz, A. B., Sanchez-Nino, M. D., Rojo, F., Vivanco, F., Esbrit, P., Ayuso, C., Alvarez-Llamas, G.,…Diabetes Cancer Connect Consortium . (2017). 2017 Update on the relationship between diabetes and colorectal cancer: Epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget, 8(11), 18456–18485.
https://doi.org/10.18632/oncotarget.14472 Google Scholar
Gorst, C., Kwok, C. S., Aslam, S., Buchan, I., Kontopantelis, E., Myint, P. K., Heatlie, G., Loke, Y., Rutter, M. K., Mamas, M. A. (2015). Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care, 38(12), 2354–2369.
https://doi.org/10.2337/dc15-1188 Google Scholar
Gude, F., Díaz-Vidal, P., Rúa-Pérez, C., Alonso-Sampedro, M., Fernández-Merino, C., Rey-García, J., Cadarso-Suárez, C., Pazos-Couselo, M., García-López, J. M., Gonzalez-Quintela, A. (2017). Glycemic variability and its association with demographics and lifestyles in a general adult population. Journal of Diabetes Science and Technology, 11(4), 780–790.
https://doi.org/10.1177/1932296816682031 Google Scholar
Hammer, M. J., Casper, C., Gooley, T. A., O’Donnell, P. V., Boeckh, M., Hirsch, I. B. (2009). The contribution of malglycemia to mortality among allogeneic hematopoietic cell transplant recipients. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 15(3), 344–351.
https://doi.org/10.1016/j.bbmt.2008.12.488 Google Scholar
Hammer, M. J., Storey, S., Hershey, D. S., Brady, V. J., Davis, E., Mandolfo, N., Bryant, A. L., Olausson, J. (2019). Hyperglycemia and cancer: A state-of-the-science review. Oncology Nursing Forum, 46(4), 459–472.
https://doi.org/10.1188/19.ONF.459-472 Google Scholar
Han, F., Wu, G., Zhang, S., Zhang, J., Zhao, Y., Xu, J. (2021). The association of metabolic syndrome and its components with the incidence and survival of colorectal cancer: A systematic review and meta-analysis. International Journal of Biological Sciences, 17(2), 487–497.
https://doi.org/10.7150/ijbs.52452 Google Scholar
Hashimoto, Y., Kaji, A., Sakai, R., Osaka, T., Ushigome, E., Hamaguchi, M., Yamazaki, M., Fukui, M. (2020). Skipping breakfast is associated with glycemic variability in patients with type 2 diabetes. Nutrition (Burbank, Los Angeles County, Calif.), 71, 110639.
https://doi.org/10.1016/j.nut.2019.110639 Google Scholar
International Diabetes Foundation . (2019). IDF diabetes atlas (9th ed.).
https://www.diabetesatlas.org/ Google Scholar
Kim, Y., Rajan, K. B., Sims, S. A., Wroblewski, K. E., Reutrakul, S. (2014). Impact of glycemic variability and hypoglycemia on adverse hospital outcomes in non-critically ill patients. Diabetes Research and Clinical Practice, 103(3), 437–443.
https://doi.org/10.1016/j.diabres.2013.11.026 Google Scholar
Kobayashi, D., Noto, H., Takahashi, O., Shimbo, T. (2020). Glycemic variability and subsequent malignancies among the population without diabetes. Diabetes Research and Clinical Practice, 159, 107987.
https://doi.org/10.1016/j.diabres.2019.107987 Google Scholar
Kovatchev, B. (2019). Glycemic variability: Risk factors, assessment, and control. Journal of Diabetes Science and Technology, 13(4), 627–635.
https://doi.org/10.1177/1932296819826111 Google Scholar
Kuhlman, P., Isom, S., Pardee, T. S., Burns, C., Tawfik, B., Lamar, Z. S., Powell, B. L., Klepin, H. D. (2019). Association between glycemic control, age, and outcomes among intensively treated patients with acute myeloid leukemia. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer, 27(8), 2877–2884.
https://doi.org/10.1007/s00520-018-4582-6 Google Scholar
Mandolfo, N., Berger, A., Hammer, M. (2020). Glycemic variability in patients with gastrointestinal cancer: An integrative review. European Journal of Oncology Nursing: The Official Journal of European Oncology Nursing Society, 48, 101797.
https://doi.org/10.1016/j.ejon.2020.101797 Google Scholar
Monnier, L., Colette, C., Owens, D. R. (2018). The application of simple metrics in the assessment of glycaemic variability. Diabetes & Metabolism, 44(4), 313–319.
https://doi.org/10.1016/j.diabet.2018.02.008 Google Scholar
National Comprehensive Cancer Network . (2020). NCCN clinical practice guidelines in oncology (NCCN Guidelines): Colon cancer (No. Version 4.2020).
https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf Google Scholar
Ohta, H., Hayashi, T., Murai, S., Shiouchi, H., Ando, Y., Kumazawa, S., Ito, K., Ikeda, Y., Matsuoka, H., Maeda, K., Kawada, K., Yasuda, K., Yamada, S. (2017). Comparison between hypersensitivity reactions to cycles of modified FOLFOX6 and XELOX therapies in patients with colorectal cancer. Cancer Chemotherapy and Pharmacology, 79(5), 1021–1029.
https://doi.org/10.1007/s00280-017-3294-9 Google Scholar
Peyser, T. A., Balo, A. K., Buckingham, B. A., Hirsch, I. B., Garcia, A. (2018). Glycemic variability percentage: A novel method for assessing glycemic variability from continuous glucose monitor data. Diabetes Technology & Therapeutics, 20(1), 6–16.
https://doi.org/10.1089/dia.2017.0187 Google Scholar
Saito, Y., Noto, H., Takahashi, O., Kobayashi, D. (2019). Visit-to-visit hemoglobin A1c variability is associated with later cancer development in patients with diabetes mellitus. Cancer Journal (Sudbury, Mass.), 25(4), 237–240.
https://doi.org/10.1097/PPO.0000000000000387 Google Scholar
Sato, H., Hosojima, M., Ishikawa, T., Aoki, K., Okamoto, T., Saito, A., Tsuchida, M. (2017). Glucose variability based on continuous glucose monitoring assessment is associated with postoperative complications after cardiovascular surgery. Annals of Thoracic and Cardiovascular Surgery: Official Journal of the Association of Thoracic and Cardiovascular Surgeons of Asia, 23(5), 239–247.
https://doi.org/10.5761/atcs.oa.17-00045 Google Scholar
Selvin, E., Parrinello, C. M., Daya, N., Bergenstal, R. M. (2016). Trends in insulin use and diabetes control in the U.S.: 1988-1994 and 1999-2012. Diabetes Care, 39(3), e33–e35.
https://doi.org/10.2337/dc15-2229 Google Scholar
Timmons, J. G., Cunningham, S. G., Sainsbury, C. A., Jones, G. C. (2017). Inpatient glycemic variability and long-term mortality in hospitalized patients with type 2 diabetes. Journal of Diabetes and its Complications, 31(2), 479–482.
https://doi.org/10.1016/j.jdiacomp.2016.06.013 Google Scholar
U.S. Census Bureau . (2018). Income by zip code [Data set].
https://www.cubitplanning.com/ Google Scholar
Wang, J., Yan, R., Wen, J., Kong, X., Li, H., Zhou, P., Zhu, H., Su, X., Ma, J. (2017). Association of lower body mass index with increased glycemic variability in patients with newly diagnosed type 2 diabetes: A cross-sectional study in China. Oncotarget, 8(42), 73133–73143.
https://doi.org/10.18632/oncotarget.17111 Google Scholar
Xia, J., Xu, J., Li, B., Liu, Z., Hao, H., Yin, C., Xu, D. (2017). Association between glycemic variability and major adverse cardiovascular and cerebrovascular events (MACCE) in patients with acute coronary syndrome during 30-day follow-up. Clinica Chimica Acta; International Journal of Clinical Chemistry, 466, 162–166.
https://doi.org/10.1016/j.cca.2017.01.022 Google Scholar
Comments (0)