1.
Hunter, DJ, Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019; 393: 1745–1759.
Google Scholar |
Crossref |
Medline2.
Cross, M, Smith, E, Hoy, D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014; 73: 1323–1330.
Google Scholar |
Crossref |
Medline |
ISI3.
Sharif, M, Kirwan, JR, Elson, CJ, et al. Suggestion of nonlinear or phasic progression of knee osteoarthritis based on measurements of serum cartilage oligomeric matrix protein levels over five years. Arthritis Rheum 2004; 50: 2479–2488.
Google Scholar |
Crossref |
Medline4.
Prieto-Alhambra, D, Judge, A, Javaid, MK, et al. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 2014; 73: 1659–1664.
Google Scholar |
Crossref |
Medline |
ISI5.
Allen, KD, Golightly, YM. State of the evidence. Curr Opin Rheumatol 2015; 27: 276–283.
Google Scholar |
Crossref |
Medline |
ISI6.
Sellam, J, Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 2013; 80: 568–573.
Google Scholar |
Crossref |
Medline |
ISI7.
Rousseau, J, Garnero, P. Biological markers in osteoarthritis. Bone 2012; 51: 265–277.
Google Scholar |
Crossref |
Medline |
ISI8.
Rousseau, JC, Zhu, Y, Miossec, P, et al. Serum levels of type IIA procollagen amino terminal propeptide (PIIANP) are decreased in patients with knee osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2004; 12: 440–447.
Google Scholar |
Crossref |
Medline |
ISI9.
Gudmann, NS, Wang, J, Hoielt, S, et al. Cartilage turnover reflected by metabolic processing of type II collagen: a novel marker of anabolic function in chondrocytes. Int J Mol Sci 2014; 15: 18789–18803.
Google Scholar |
Crossref |
Medline10.
Luo, Y, He, Y, Reker, D, et al. A novel high sensitivity type ii collagen blood-based biomarker, PRO-C2, for assessment of cartilage formation. Int J Mol Sci 2018; 19: 3485.
Google Scholar |
Crossref11.
Deberg, M, Labasse, A, Christgau, S, et al. New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2005; 13: 258–265.
Google Scholar |
Crossref |
Medline |
ISI12.
Deberg, MA, Labasse, AH, Collette, J, et al. One-year increase of Coll 2-1, a new marker of type II collagen degradation, in urine is highly predictive of radiological OA progression. Osteoarthritis Cartilage 2005; 13: 1059–1065.
Google Scholar |
Crossref |
Medline |
ISI13.
Valdes, AM, Meulenbelt, I, Chassaing, E, et al. Large scale meta-analysis of urinary C-terminal telopeptide, serum cartilage oligomeric protein and matrix metalloprotease degraded type II collagen and their role in prevalence, incidence and progression of osteoarthritis. Osteoarthritis Cartilage 2014; 22: 683–689.
Google Scholar |
Crossref |
Medline14.
Pavelka, K, Forejtova, S, Olejarova, M, et al. Hyaluronic acid levels may have predictive value for the progression of knee osteoarthritis. Osteoarthritis Cartilage 2004; 12: 277–283.
Google Scholar |
Crossref |
Medline |
ISI15.
Sowers, M, Jannausch, M, Stein, E, et al. C-reactive protein as a biomarker of emergent osteoarthritis. Osteoarthritis Cartilage 2002; 10: 595–601.
Google Scholar |
Crossref |
Medline |
ISI16.
Takahashi, T, Naito, S, Onoda, J, et al. Development of a novel immunoassay for the measurement of type II collagen neoepitope generated by collagenase cleavage. Clin Chim Acta 2012; 413: 1591–1599.
Google Scholar |
Crossref |
Medline |
ISI17.
Poole, AR, Ha, N, Bourdon, S, et al. Ability of a urine assay of type II collagen cleavage by collagenases to detect early onset and progression of articular cartilage degeneration: results from a population-based cohort study. J Rheumatol 2016; 43: 1864–1870.
Google Scholar |
Crossref |
Medline18.
Mort, JS, Beaudry, F, Theroux, K, et al. Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage. Osteoarthritis Cartilage 2016; 24: 1461–1469.
Google Scholar |
Crossref |
Medline19.
Bay-Jensen, AC, Liu, Q, Byrjalsen, I, et al. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM—increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 2011; 44: 423–429.
Google Scholar |
Crossref |
Medline |
ISI20.
Zhen, EY, Brittain, IJ, Laska, DA, et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum 2008; 58: 2420–2431.
Google Scholar |
Crossref |
Medline21.
Luo, Y, B-JA, Karsdal, MA, Qvist, P, et al. Serum CTX-II does not measure the same as urinary CTX-II. Osteoarthritis Cartilage 2018; 26: S179.
Google Scholar |
Crossref22.
Bay-Jensen, AC, Kjelgaard-Petersen, CF, Petersen, KK, et al. Aggrecanase degradation of type III collagen is associated with clinical knee pain. Clin Biochem 2018; 58: 37–43.
Google Scholar |
Crossref |
Medline23.
Arendt-Nielsen, L. Joint pain: more to it than just structural damage. Pain 2017; 158(Suppl. 1): S66–S73.
Google Scholar |
Crossref |
Medline24.
Nielsen, MJ, Nedergaard, AF, Sun, S, et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res 2013; 5: 303–315.
Google Scholar |
Medline25.
Siebuhr, AS, Petersen, KK, Arendt-Nielsen, L, et al. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthritis Cartilage 2014; 22: 44–50.
Google Scholar |
Crossref |
Medline26.
Kjelgaard-Petersen, C, Siebuhr, AS, Christiansen, T, et al. Synovitis biomarkers: ex vivo characterization of three biomarkers for identification of inflammatory osteoarthritis. Biomarkers 2015; 20: 547–556.
Google Scholar |
Crossref |
Medline27.
Vassiliadis, E, Veidal, SS, Barascuk, N, et al. Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis. BMC Dermatol 2011; 11: 6.
Google Scholar |
Crossref |
Medline28.
Veidal, SS, Vassiliadis, E, Barascuk, N, et al. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis. Liver Int 2010; 30: 1293–1304.
Google Scholar |
Crossref |
Medline |
ISI29.
Charni-Ben Tabassi, N, Richardot, P, Toh, L, et al. Circulating nitrated N-telopeptide of type III collagen (IIINys) as a biochemical marker of oxidative-related synovial tissue metabolism in rheumatoid arthritis. Ann Rheum Dis 2009; 68: 451–452.
Google Scholar |
Crossref |
Medline30.
Richardot, P, Charni-Ben Tabassi, N, Toh, L, et al. Nitrated type III collagen as a biological marker of nitric oxide-mediated synovial tissue metabolism in osteoarthritis. Osteoarthritis Cartilage 2009; 17: 1362–1367.
Google Scholar |
Crossref |
Medline31.
Eyre, DR, Weis, MA. The Helix-II epitope: a cautionary tale from a cartilage biomarker based on an invalid collagen sequence. Osteoarthritis Cartilage 2009; 17: 423–426.
Google Scholar |
Crossref |
Medline32.
Hosseininia, S, Weis, MA, Rai, J, et al. Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage. Osteoarthritis Cartilage 2016; 24: 1029–1035.
Google Scholar |
Crossref |
Medline |
ISI33.
Charni, N, Juillet, F, Garnero, P. Urinary type II collagen helical peptide (HELIX-II) as a new biochemical marker of cartilage degradation in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 2005; 52: 1081–1090.
Google Scholar |
Crossref |
Medline34.
Briot, K, Roux, C, Gossec, L, et al. Effects of etanercept on serum biochemical markers of cartilage metabolism in patients with spondyloarthropathy. J Rheumatol 2008; 35: 310–314.
Google Scholar |
Medline35.
Garnero, P, Thompson, E, Woodworth, T, et al. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum 2010; 62: 33–43.
Google Scholar |
Medline36.
Garnero, P, Charni, N, Juillet, F, et al. Increased urinary type II collagen helical and C telopeptide levels are independently associated with a rapidly destructive hip osteoarthritis. Ann Rheum Dis 2006; 65: 1639–1644.
Google Scholar |
Crossref |
Medline37.
Bay-Jensen, AC, Andersen, TL, Charni-Ben Tabassi, N, et al. Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage. Osteoarthritis Cartilage 2008; 16: 615–623.
Google Scholar |
Crossref |
Medline |
ISI38.
Charni-Ben Tabassi, N, Desmarais, S, Bay-Jensen, AC, et al. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation. Osteoarthritis Cartilage 2008; 16: 1183–1191.
Google Scholar |
Crossref |
Medline39.
Girkontaite, I, Frischholz, S, Lammi, P, et al. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol 1996; 15: 231–238.
Google Scholar |
Crossref |
Medline |
ISI40.
He, Y, Siebuhr, AS, Brandt-Hansen, NU, et al. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. BMC Musculoskelet Disord 2014; 15: 309.
Google Scholar |
Crossref |
Medline |
ISI41.
Coghlan, RF, Oberdorf, JA, Sienko, S, et al. A degradation fragment of type X collagen is a real-time marker for bone growth velocity. Sci Transl Med 2017; 9: 419.
Google Scholar |
Crossref42.
He, Y, Manon-Jensen, T, Arendt-Nielsen, L, et al. Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis. Osteoarthritis Cartilage 2019; 27: 611–620.
Google Scholar |
Crossref |
Medline43.
Kluzek, S, Bay-Jensen, AC, Judge, A, et al. Serum cartilage oligomeric matrix protein and development of radiographic and painful knee osteoarthritis. A community-based cohort of middle-aged women. Biomarkers 2015; 20: 557–564.
Google Scholar |
Crossref |
Medline44.
Catterall, JB, Hsueh, MF, Stabler, TV, et al. Protein modification by deamidation indicates variations in joint extracellular matrix turnover. J Biol Chem 2012; 287: 4640–4651.
Google Scholar |
Crossref |
Medline45.
Lorenzo, P, Aspberg, A, Saxne, T, et al. Quantification of cartilage oligomeric matrix protein (COMP) and a COMP neoepitope in synovial fluid of patients with different joint disorders by novel automated assays. Osteoarthritis Cartilage 2017; 25: 1436–1442.
Google Scholar |
Crossref |
Medline46.
Sun, S, Karsdal, MA, Bay-Jensen, AC, et al. The development and characterization of an ELISA specifically detecting the active form of cathepsin K. Clin Biochem 2013; 46: 1601–1606.
Comments (0)