Virtual monoenergetic dual-energy CT reconstructions at 80 keV are optimal non-contrast CT technique for early stroke detection

1. Potter, CA, Vagal, AS, Goyal, M, et al. CT for treatment selection in acute ischemic stroke: A code stroke primer. Radiographics 2019; 39: 1717–1738.
Google Scholar | Crossref | Medline2. Warner, JJ, Harrington, RA, Sacco, RL, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke. Stroke 2019; 50: 3331–3332.
Google Scholar | Crossref | Medline3. Zhang, XH, Liang, HM. Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke. Medicine 2019; 98: e16360.
Google Scholar | Crossref | Medline4. Kucinski, T. Unenhanced CT and acute stroke physiology. Neuroimaging Clin N Am 2005; 15: 397–407.
Google Scholar | Crossref | Medline5. Forghani, R, De Man, B, Gupta, R. Dual-energy computed tomography: Physical principles, approaches to scanning, usage, and implementation: Part 2. Neuroimaging Clin N Am 2017; 27: 385–400.
Google Scholar | Crossref | Medline6. Hwang, WD, Mossa-Basha, M, Andre, JB, et al. Qualitative comparison of noncontrast head dual-energy computed tomography using rapid voltage switching technique and conventional computed tomography. J Comput Assist Tomogr 2016; 40: 320–325.
Google Scholar | Crossref | Medline7. Kuno, H, Sekiya, K, Chapman, MN, et al. Miscellaneous and emerging applications of dual-energy computed tomography for the evaluation of intracranial pathology. Neuroimaging Clin N Am 2017; 27: 411–427.
Google Scholar | Crossref | Medline8. Grant, KL, Flohr, TG, Krauss, B, et al. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 2014; 49: 586–592.
Google Scholar | Crossref | Medline | ISI9. Pomerantz, SR, Kamalian, S, Zhang, D, et al. Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology 2013; 266: 318–325.
Google Scholar | Crossref | Medline | ISI10. Neuhaus, V, Abdullayev, N, Große Hokamp, N, et al. Improvement of image quality in unenhanced dual-layer CT of the head using virtual monoenergetic images compared with polyenergetic single-energy CT. Invest Radiol 2017; 52: 470–476.
Google Scholar | Crossref | Medline11. Hara, H, Muraishi, H, Matsuzawa, H, et al. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke. J Korean Phys Soc 2015; 67: 103–107.
Google Scholar | Crossref12. Hixson, HR, Leiva-Salinas, C, Sumer, S, et al. Utilizing dual energy CT to improve CT diagnosis of posterior fossa ischemia. J Neuroradiol 2016; 43: 346–352.
Google Scholar | Crossref | Medline13. Van Ommen, F, Dankbaar, JW, Zhu, G, et al. Virtual monochromatic dual-energy CT reconstructions improve detection of cerebral infarct in patients with suspicion of stroke. Neuroradiology 2021; 63: 41–49.
Google Scholar | Crossref | Medline14. Kim, SJ, Lim, HK, Lee, HY, et al. Dual-energy CT in the evaluation of intracerebral hemorrhage of unknown origin: Differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol 2012; 33: 865–872.
Google Scholar | Crossref | Medline15. Arboix, A. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke. World J Clin Cases 2015; 3: 418–429.
Google Scholar | Crossref | Medline16. Hanley, JA, McNeil, BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983; 148: 839–843.
Google Scholar | Crossref | Medline | ISI17. Brazzelli, M, Sandercock, PA, Chappell, FM, et al. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. Cochrane Database Syst Rev 2009; 7: CD 007424.
Google Scholar18. Latchaw, RE, Alberts, MJ, Lev, MH, et al. Recommendations for imaging of acute ischemic stroke. A scientific statement from the American Heart Association. Stroke 2009; 40: 3646–3678.
Google Scholar | Crossref | Medline | ISI19. Patel, SC, Levine, SR, Tilley, BC, et al. Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. JAMA 2001; 286: 2830–2838.
Google Scholar | Crossref | Medline | ISI20. Nogueira, RG, Jadhav, AP, Haussen, DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018; 378: 11–21.
Google Scholar | Crossref | Medline21. Albers, GW, Marks, MP, Kemp, S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018; 378: 708–718.
Google Scholar | Crossref | Medline22. Dula, AN, Luby, M, King, BT, et al. Neuroimaging evolution of ischemia in men and women: An observational study. Ann Clin Transl Neurol 2019; 6: 575–585.
Google Scholar | Crossref | Medline23. Forster, A, Gass, A, Kern, R, et al. Gender differences in acute ischemic stroke: Etiology, stroke patterns and response to thrombolysis. Stroke 2009; 40: 2428–2432.
Google Scholar | Crossref | Medline | ISI

Comments (0)

No login
gif