Gender differences in non-cystic fibrosis bronchiectasis severity and bacterial load: the potential role of hormones

1. Nicolson, CH, Stirling, RG, Borg, BM, et al The long term effect of inhaled hypertonic saline 6% in non-cystic fibrosis bronchiectasis. Respir Med 2012; 106: 661–667.
Google Scholar | Crossref | Medline2. Vidaillac, C, Yong, VFL, Jaggi, TK, et al Gender differences in bronchiectasis: a real issue? Breathe 2018; 14: 108–121.
Google Scholar | Crossref | Medline3. Quint, JK, Millett, ER, Joshi, M, et al Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study. Eur Respir J 2016; 47: 186–193.
Google Scholar | Crossref | Medline | ISI4. Redondo, M, Ferri, S, Chalmers, J. Exacerbations of bronchiectasis in adults. Community Acquir Infect 2016; 3: 43–50.
Google Scholar | Crossref5. King, PT, Holdsworth, SR, Freezer, NJ, et al Microbiologic follow-up study in adult bronchiectasis. Respir Med 2007; 101: 1633–1638.
Google Scholar | Crossref | Medline | ISI6. Angrill, J, Agusti, C, de Celis, R, et al Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax 2002; 57: 15–19.
Google Scholar | Crossref | Medline | ISI7. Chalmers, JD, Smith, MP, McHugh, BJ, et al Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2012; 186: 657–665.
Google Scholar | Crossref | Medline | ISI8. Angrill, J, Agusti, C, De Celis, R, et al Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am J Respir Crit Care Med 2001; 164: 1628–1632.
Google Scholar | Crossref | Medline | ISI9. Hill, AT, Campbell, EJ, Hill, SL, et al Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med 2000; 109: 288–295.
Google Scholar | Crossref | Medline10. Richardson, H, Dicker, AJ, Barclay, H, et al The microbiome in bronchiectasis. Eur Respir J 2019; 28: 190048.
Google Scholar | Crossref11. Finch, S, McDonnell, MJ, Abo-Leyah, H, et al A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 2015; 12: 1602–1611.
Google Scholar | Medline12. Mirsaeidi, M, Sadikot, RT. Gender susceptibility to mycobacterial infections in patients with non-CF bronchiectasis. Int J Mycobacteriol 2015; 4: 92–96.
Google Scholar | Crossref | Medline13. Mirsaeidi, M, Hadid, W, Ericsoussi, B, et al Non-tuberculous mycobacterial disease is common in patients with non-cystic fibrosis bronchiectasis. Int J Infect Dis 2013; 17: e1000–e1004.
Google Scholar | Crossref | Medline14. Hill, AT, Sullivan, AL, Chalmers, JD, et al British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019; 74: 1–69.
Google Scholar | Crossref15. Raghavan, D, Jain, R. Increasing awareness of sex differences in airway diseases. Respirology 2016; 21: 449–459.
Google Scholar | Crossref | Medline16. Rosenfeld, M, Davis, R, FitzSimmons, S, et al Gender gap in cystic fibrosis mortality. Am J Epidemiol 1997; 145: 794–803.
Google Scholar | Crossref | Medline17. Harness-Brumley, CL, Elliott, AC, Rosenbluth, DB, et al Gender differences in outcomes of patients with cystic fibrosis. J Womens Health 2014; 23: 1012–1020.
Google Scholar | Crossref18. Carey, MA, Card, JW, Voltz, JW, et al It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2007; 18: 308–313.
Google Scholar | Crossref | Medline | ISI19. Coakley, RD, Sun, H, Clunes, LA, et al 17β-Estradiol inhibits Ca 2+-dependent homeostasis of airway surface liquid volume in human cystic fibrosis airway epithelia. J Clin Invest 2008; 118: 4025–4035.
Google Scholar | Medline20. Chotirmall, SH, Smith, SG, Gunaratnam, C, et al Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis. N Engl J Med 2012; 366: 1978–1986.
Google Scholar | Crossref | Medline21. Delmotte, P, Sanderson, MJ. Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am J Respir Cell Mol Biol 2006; 35: 110–117.
Google Scholar | Crossref | Medline22. Bustamante-Marin, XM, Ostrowski, LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 2017; 9: a028241.
Google Scholar | Crossref | Medline23. Mahmood, T, Saridogan, E, Smutna, S, et al The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum Reprod 1998; 13: 2991–2994.
Google Scholar | Crossref | Medline24. Paltieli, Y, Eibschitz, I, Ziskind, G, et al High progesterone levels and ciliary dysfunction–a possible cause of ectopic pregnancy. J Assist Reprod Genet 2000; 17: 103–106.
Google Scholar | Crossref | Medline25. Okada, A, Ohta, Y, Brody, SL, et al Role of foxj1 and estrogen receptor alpha in ciliated epithelial cell differentiation of the neonatal oviduct. J Mol Endocrinol 2004; 32: 615–625.
Google Scholar | Crossref | Medline26. Jain, R, Ray, JM, Pan, JH, et al Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am J Respir Cell Mol Bio 2012; 46: 446–453.
Google Scholar | Crossref | Medline | ISI27. Holm, G. Serum Progesterone test: purpose, results, and risks, https://www.healthline.com/health/serum-progesterone#test-results (accessed 30 December 2020).
Google Scholar28. Finch, S, Shoemark, A, Dicker, AJ, et al Pregnancy zone protein is associated with airway infection, neutrophil extracellular trap formation, and disease severity in bronchiectasis. Am J Respir Crit Care Med 2019; 200: 992–1001.
Google Scholar | Crossref | Medline29. Lowdermilk, DL, Perry, SE. Anatomy and physiology of pregnancy. In: Lowdermilk, D, Perry, S, Cashio, MC (eds) Maternity nursing. St. Louis, Mo: Mosby Elsevier, 2006, pp.208–230.
Google Scholar30. Wolf, DP, Blasco, L, Khan, MA, et al Human cervical mucus. II. Changes in viscoelasticity during the ovulatory menstrual cycle. Fertil Steril 1977; 28: 47–52.
Google Scholar | Crossref | Medline31. Holtrop, M, Heltshe, S, Shabanova, V, et al A prospective study of the effects of sex hormones on lung function and inflammation in women with cystic fibrosis. Ann Am Thorac Soc 2021; 18: 1158–1166.
Google Scholar | Crossref | Medline32. Welsh, EJ, Evans, DJ, Fowler, SJ, et al Interventions for bronchiectasis: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2015; 2015: CD010337.
Google Scholar33. Elkins, MR, Bye, PT. Mechanisms and applications of hypertonic saline. J R Soc Med 2011; 104(Suppl. 1): S2–S5.
Google Scholar | SAGE Journals34. Kellett, F, Redfern, J, Niven, RM. Evaluation of nebulised hypertonic saline (7%) as an adjunct to physiotherapy in patients with stable bronchiectasis. Respir Med 2005; 99: 27–31.
Google Scholar | Crossref | Medline | ISI35. Kellett, F, Robert, NM. Nebulised 7% hypertonic saline improves lung function and quality of life in bronchiectasis. Respir Med 2011; 105: 1831–1835.
Google Scholar | Crossref | Medline | ISI36. Annoni, S, Bellofiore, A, Repossini, E, et al Effectiveness of chest physiotherapy and pulmonary rehabilitation in patients with non-cystic fibrosis bronchiectasis: a narrative review. Monaldi Arch Chest Dis. Epub ahead of print 12 February 2020. DOI: 10.4081/monaldi.2020.1107.
Google Scholar | Crossref | Medline37. Maiz Carro, L, Martinez-Garcia, MA. Nebulized hypertonic saline in noncystic fibrosis bronchiectasis: a comprehensive review. Ther Adv Respir Dis 2019; 13: 1753466619866102.
Google Scholar | SAGE Journals | ISI38. Robinson, M, Hemming, AL, Regnis, JA, et al Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax 1997; 52: 900–903.
Google Scholar | Crossref | Medline | ISI39. Chalmers, JD, Aliberti, S, Blasi, F. Management of bronchiectasis in adults. Eur Respir J 2015; 45: 1446–1462.
Google Scholar | Crossref | Medline | ISI40. Altenburg, J, de Graaff, CS, Stienstra, Y, et al Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 2013; 309: 1251–1259.
Google Scholar | Crossref | Medline | ISI41. Serisier, DJ, Martin, ML, McGuckin, MA, et al Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 2013; 309: 1260–1267.
Google Scholar | Crossref | Medline | ISI42. Wong, C, Jayaram, L, Karalus, N, et al Azithromycin for prevention of Exacerbations in Non-Cystic Fibrosis Bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 2012; 380: 660–667.
Google Scholar | Crossref | Medline | ISI43. Miller, AP, Chen, YF, Xing, D, et al Hormone replacement therapy and inflammation: interactions in cardiovascular disease. Hypertension 2003; 42: 657–663.
Google Scholar | Crossref | Medline44. Ordoñez, CL, Henig, NR, Mayer-Hamblett, N, et al Inflammatory and microbiologic markers in induced sputum after intravenous antibiotics in cystic fibrosis. Am J Respir Crit Care Med 2003; 168: 1471–1475.
Google Scholar | Crossref | Medline45. Vinogradova, Y, Coupland, C, Hippisley-Cox, J. Use of hormone replacement therapy and risk of venous thromboembolism: nested case-control studies using the QResearch and CPRD databases. BMJ 2019; 364: k4810.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif