Drug-Induced Seizures: Considerations for Underlying Molecular Mechanisms

1. Arrowsmith, J, Miller, P. Phase II and phase III attrition rates 2011-2012. Nat Rev Drug Discov. 2013;12:569.
Google Scholar | Crossref | Medline | ISI2. Pangalos, MN, Schechter, LE, Hurko, O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov. 2007;6:521-532.
Google Scholar | Crossref | Medline | ISI3. Weaver, RJ, Valentin, J-P. Today’s challenges to de-risk and predict drug safety in human “Mind-the-Gap”. Toxicol Sci. 2019;167:307-321.
Google Scholar | Crossref | Medline4. Thomas, DW, Burns, J, Audette, J, Carroll, A, Dow-Hygelund, C, Hay, M. Clinical Development Success Rates 2006–2015. San Diego, Washington, DC: Biomedtracker/BIO/Bend: Amplion; 2016.
Google Scholar5. ICH. ICH S7A . Safety Pharmacology studies for human pharmaceuticals. In: Evaluation of Medicines for Human Use. CPMP/ICH/539/00. London: European Agency for the Evaluation of Medicinal Products; 2000. Accessed November 16, 2000.
Google Scholar6. Sam, AH, Salem, V, Ghatei, MA. Rimonabant: From RIO to Ban. J Obes. 2011;2011:432607.
Google Scholar | Crossref | Medline7. Kaitin, KI, Milne, CP. A dearth of new meds. Sci Am. 2011;305:16.
Google Scholar | Crossref | Medline | ISI8. Aagaard, L, Hansen, EH. Adverse drug reactions reported by consumers for nervous system medications in Europe 2007 to 2011. BMC Pharmacol Toxicol. 2013;14:30.
Google Scholar | Crossref | Medline9. Authier, S, Arezzo, J, Delatte, MS, et al. Safety pharmacology investigations on the nervous system: An industry survey. J Pharmacol Toxicol Methods. 2016;81:37-46.
Google Scholar | Crossref | Medline10. Bass, A, Kinter, L, Williams, P. Origins, practices and future of safety pharmacology. J Pharmacol Toxicol Methods. 2004;49:145-151.
Google Scholar | Crossref | Medline11. Murphy, K, Delanty, N. Drug-Induced Seizures. CNS Drugs. 2000;14:135-146.
Google Scholar | Crossref | ISI12. Accardi, MV, Pugsley, MK, Forster, R, Troncy, E, Huang, H, Authier, S. The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods. 2016;81:47-59.
Google Scholar | Crossref | Medline13. Neligan, A . Drug-induced seizures. In: Shorvon, S, Andermann, F, Guerrini, R, eds. The Causes of Epilepsy: Common and Uncommon Causes in Adults and Children. Cambridge: Cambridge University Press; 2011:664-673.
Google Scholar | Crossref14. Zutshi, D . Medication-induced seizures and status epilepticus. In: Husain, AM, Sinha, SR, eds. Continuous EEG Monitoring: Principles and Practice. Cham: Springer International Publishing; 2017:361-382.
Google Scholar | Crossref15. Porter, J, Jick, H. Drug-induced anaphylaxis, convulsions, deafness, and extrapyramidal symptoms. Lancet. 1977;309:587-588.
Google Scholar | Crossref16. Program, BCS . Drug-induced convulsions. Lancet. 1972;300:677-679.
Google Scholar | Crossref17. Smith, PEM, McBride, A. Illicit drugs and seizures. Seizure. 1999;8:441-443.
Google Scholar | Crossref | Medline18. Thundiyil, JG, Rowley, F, Papa, L, Olson, KR, Kearney, TE. Risk factors for complications of drug-induced seizures. J Med Toxicol. 2011;7:16-23.
Google Scholar | Crossref | Medline19. Messing, RO, Closson, RG, Simon, RP. Drug-induced seizures: a 10-year experience. Neurology. 1984;34:1582.
Google Scholar | Crossref | Medline | ISI20. Ruffmann, C, Bogliun, G, Beghi, E. Epileptogenic drugs: a systematic review. Expert Rev Neurother. 2006;6:575-589.
Google Scholar | Crossref | Medline21. Accardi, MV, Huang, H, Authier, S. Seizure liability assessments using the hippocampal tissue slice: comparison of non-clinical species. J Pharmacol Toxicol Methods. 2018;93:59-68.
Google Scholar | Crossref | Medline22. Varma, S, Bishara, D, Besag, FMC, Taylor, D. Clozapine-related EEG changes and seizures: dose and plasma-level relationships. Ther Adv Psychopharmacol. 2011;1:47-66.
Google Scholar | SAGE Journals23. Williams, AM, Park, SH. Seizure associated with clozapine: incidence, etiology, and management. CNS Drugs. 2015;29:101-111.
Google Scholar | Crossref | Medline | ISI24. Sloviter, RS . The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol. 1994;35:640-654.
Google Scholar | Crossref | Medline | ISI25. Baram, TZ, Jensen, FE, Brooks-Kayal, A. Does acquired epileptogenesis in the immature brain require neuronal death? Epilepsy Curr. 2011;11:21-26.
Google Scholar | SAGE Journals26. Oyrer, J, Maljevic, S, Scheffer, IE, Berkovic, SF, Petrou, S, Reid, CA. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev. 2018;70:142-173.
Google Scholar | Crossref | Medline27. Fukata, Y, Fukata, M. Epilepsy and synaptic proteins. Curr Opin Neurobiol. 2017;45:1-8.
Google Scholar | Crossref | Medline28. Kaplan, DI, Isom, LL, Petrou, S. Role of sodium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022814.
Google Scholar | Crossref | Medline29. Köhling, R, Wolfart, J. Potassium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022814.
Google Scholar | Crossref | Medline30. Alexander, RPD, Mitry, J, Sareen, V, Khadra, A, Bowie, D. Cerebellar stellate cell excitability is coordinated by shifts in the gating behavior of voltage-gated Na+ and A-type K+ channels. eNeuro. 2019;6:0126.
Google Scholar | Crossref31. Bowery, NG, Smart, TG. GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol. 2006;147:S109-S119.
Google Scholar | Crossref | Medline32. Jacob, TC, Moss, SJ, Jurd, R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008;9:331-343.
Google Scholar | Crossref | Medline | ISI33. Olsen, RW, Sieghart, W. International union of pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008;60:243-260.
Google Scholar | Crossref | Medline | ISI34. Wanleenuwat, P, Suntharampillai, N, Iwanowski, P. Antibiotic-induced epileptic seizures: Mechanisms of action and clinical considerations. Seizure. 2020;81:167-174.
Google Scholar | Crossref | Medline35. Wallace, KL . Antibiotic-induced convulsions. Crit Care Clin. 1997;13:741-762.
Google Scholar | Crossref | Medline | ISI36. Sugimoto, M, Uchida, I, Mashimo, T, et al. Evidence for the involvement of GABAA receptor blockade in convulsions induced by cephalosporins. Neuropharmacology. 2003;45:304-314.
Google Scholar | Crossref | Medline | ISI37. De Sarro, G, Ammendola, D, Nava, F, De Sarro, A. Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice. Brain Res. 1995;671:131-140.
Google Scholar | Crossref | Medline38. Miller, AD, Ball, AM, Bookstaver, PB, Dornblaser, EK, Bennett, CL. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31:408-423.
Google Scholar | Crossref | Medline | ISI39. Akahane, K, Kato, M, Takayama, S. Involvement of inhibitory and excitatory neurotransmitters in levofloxacin- and ciprofloxacin-induced convulsions in mice. Antimicrob Agents Chemother. 1993;37:1764-1770.
Google Scholar | Crossref | Medline40. Bellon, A, Perez-Garcia, G, Coverdale, JH, Chacko, RC. Seizures associated with levofloxacin: case presentation and literature review. Eur J Clin Pharmacol. 2009;65:959-962.
Google Scholar | Crossref | Medline41. Olsen, RW . Picrotoxin-like channel blockers of GABAA receptors. Proc Natl Acad Sci Unit States Am. 2006;103:6081-6082.
Google Scholar | Crossref | Medline42. Zhu, S, Noviello, CM, Teng, J, Walsh, RM, Kim, JJ, Hibbs, RE. Structure of a human synaptic GABAA receptor. Nature. 2018;559:67-72.
Google Scholar | Crossref | Medline43. Ueno, S, Bracamontes, J, Zorumski, C, Weiss, DS, Steinbach, JH. Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAAReceptor. J Neurosci. 1997;17:625-634.
Google Scholar | Crossref | Medline44. Chen, H-Y, Albertson, TE, Olson, KR. Treatment of drug-induced seizures. Br J Clin Pharmacol. 2016;81:412-419.
Google Scholar | Crossref | Medline45. Vaughan, CW, Ingram, SL, Connor, MA, Christie, MJ. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997;390:611-614.
Google Scholar | Crossref | Medline46. Lévesque, M, Avoli, M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37:2887-2899.
Google Scholar | Crossref | Medline | ISI47. Stafstrom, CE, Sasaki-Adams, DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res. 2003;53:129-137.
Google Scholar | Crossref | Medline48. Tanahashi, S, Yamamura, S, Nakagawa, M, Motomura, E, Okada, M. Clozapine, but not haloperidol, enhances glial d-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol. 2012;165:1543-1555.
Google Scholar | Crossref | Medline49. Hemstapat, K, Monteith, GR, Smith, D, Smith, a. MT. Morphine-3-glucuronide’s neuro-excitatory effects are mediated via indirect activation of N-Methyl-d-Aspartic acid receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg. 2003;97:494-505.
Google Scholar | Crossref | Medline50. Harrison, NL, Skelly, MJ, Grosserode, EK, et al. Effects of acute alcohol on excitability in the CNS. Neuropharmacology. 2017;122:36-45.
Google Scholar | Crossref | Medline51. Snell, LD, Nunley, KR, Lickteig, RL, Browning, MD, Tabakoff, B, Hoffman, PL. Regional and subunit specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Mol Brain Res. 1996;40:71-78.
Google Scholar | Crossref | Medline52. Kalluri, HSG, Mehta, AK, Ticku, MK. Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Mol Brain Res. 1998;58:221-224.
Google Scholar |

Comments (0)

No login
gif