1. Reich, D. Multiple Sclerosis. New Engl J Med 2017; 176: 139–48.
https://doi.org/10.1056/NEJMra1401483.Multiple.
Google Scholar2. Amato, MP, Derfuss, T, Hemmer, B, et al. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler J 2018; 24: 590–603.
https://doi.org/10.1177/1352458516686847.
Google Scholar |
SAGE Journals |
ISI3. Belbasis, L, Bellou, V, Evangelou, E, et al. Environmental risk factors and multiple sclerosis: An umbrella review of systematic reviews and meta-analyses. Lancet Neurol 2015; 14: 263–73.
https://doi.org/10.1016/S1474-4422(14)70267-4.
Google Scholar |
Crossref |
Medline |
ISI4. Wallin, MT, Culpepper, WJ, Nichols, E, et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18: 269–85.
https://doi.org/10.1016/S1474-4422(18)30443-5.
Google Scholar |
Crossref |
Medline5. Oh, J, Vidal-Jordana, A, Montalban, X. Multiple sclerosis: Clinical aspects. Curr Opin Neurol 2018; 31: 752–9.
https://doi.org/10.1097/WCO.0000000000000622.
Google Scholar |
Crossref |
Medline6. Armoiry, X, Kan, A, Melendez-Torres, GJ, et al. Short- and long-term clinical outcomes of use of beta-interferon or glatiramer acetate for people with clinically isolated syndrome: a systematic review of randomised controlled trials and network meta-analysis. J Neurol 2018; 265: 999–1009.
https://doi.org/10.1007/s00415-018-8752-8.
Google Scholar |
Crossref |
Medline7. Hosseiny, M, Newsome, SD, Yousem, DM. Radiologically isolated syndrome: A review for neuroradiologists. Am J Neuroradiol 2020; 41: 1542–9.
https://doi.org/10.3174/ajnr.A6649.
Google Scholar |
Medline8. Zhang, K, Zhao, Y, Liang, Z, et al. Validity of the McDonald criteria in predicting second events in multiple sclerosis. Mult Scler Relat Disord 2020; 43: 102223.
https://doi.org/10.1016/j.msard.2020.102223.
Google Scholar |
Crossref |
Medline9. Thompson, AJ, Banwell, BL, Barkhof, F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162–73.
https://doi.org/10.1016/S1474-4422(17)30470-2.
Google Scholar |
Crossref |
Medline |
ISI10. Patzig, M, Burke, M, Brückmann, H, et al. Comparison of 3D cube FLAIR with 2D FLAIR for multiple sclerosis imaging at 3 Tesla. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgeb Verfahren 2014; 186: 484–8.
https://doi.org/10.1055/s-0033-1355896.
Google Scholar11. Gaitán, MI, Yañez, P, Paday Formenti, ME, et al. SWAN-venule: An optimized MRI technique to detect the central vein sign in MS Plaques. Am J Neuroradiol 2020; 41: 456–60.
https://doi.org/10.3174/ajnr.A6437.
Google Scholar |
Crossref |
Medline12. Mistry, N, Abdel-Fahim, R, Samaraweera, A, et al. Imaging central veins in brain lesions with 3-T T2∗-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult Scler 2016; 22: 1289–96.
https://doi.org/10.1177/1352458515616700.
Google Scholar |
SAGE Journals |
ISI13. Solomon, AJ, Schindler, MK, Howard, DB, et al. “Central vessel sign” on 3T FLAIR* MRI for the differentiation of multiple sclerosis from migraine. Ann Clin Transl Neurol 2016; 3: 82–7.
https://doi.org/10.1002/acn3.273.
Google Scholar |
Crossref |
Medline14. Cortese, R, Magnollay, L, Tur, C, et al. Value of the central vein sign at 3T to differentiate MS from seropositive NMOSD. Neurology 2018; 90: e1183–90.
https://doi.org/10.1212/WNL.0000000000005256.
Google Scholar |
Crossref15. Jang, H, Ma, YJ, Chang, EY, et al. Inversion recovery ultrashort TE MR imaging of myelin is significantly correlated with disability in patients with multiple sclerosis. Am J Neuroradiol 2021; 42: 868–74.
https://doi.org/10.3174/ajnr.a7006.
Google Scholar |
Crossref |
Medline16. Hackmack, K, Weygandt, M, Wuerfel, J, et al. Can we overcome the “clinico-radiological paradox” in multiple sclerosis? J Neurol 2012; 259: 2151–60.
https://doi.org/10.1007/s00415-012-6475-9.
Google Scholar |
Crossref |
Medline17. Maranzano, J, Dadar, M, Rudko, DA, et al. Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3T and 7T MRI. Am J Neuroradiol 2019; 40: 1162–9.
https://doi.org/10.3174/ajnr.A6099.
Google Scholar |
Crossref |
Medline18. Frederick, MC, Cameron, MH. Tumefactive demyelinating lesions in multiple sclerosis and associated disorders. Curr Neurol Neurosci Rep 2016; 16: 1–7.
https://doi.org/10.1007/s11910-016-0626-9.
Google Scholar |
Crossref |
Medline19. Algahtani, H, Shirah, B, Alassiri, A. Tumefactive demyelinating lesions: A comprehensive review. Mult Scler Relat Disord 2017; 14: 72–9.
https://doi.org/10.1016/j.msard.2017.04.003.
Google Scholar |
Crossref |
Medline20. Bevan, CJ, Cree, BA. Fulminant demyelinating Diseases of the central nervous system. Semin Neurol 2015; 35: 656–66.
https://doi.org/10.1055/s-0035-1564682.
Google Scholar |
Crossref |
Medline21. Chvojka, M, Gut, J, Jiránek, M. Acute disseminated encephalomyelitis. Pediatr pro Praxi 2020; 21: 369–73.
https://doi.org/10.36290/ped.2020.076.
Google Scholar |
Crossref22. Kumar, N, Shreesh, J, Saurabh, O, et al. Evidence of coronavirus (CoV) pathogenesis and emerging pathogen SARS - CoV - 2 in the nervous system : A review on neurological impairments and manifestations. J Mol Neurosci 2021; 19: 1–19.
https://doi.org/10.1007/s12031-020-01767-6 Google Scholar23. Otallah, S. Acute disseminated encephalomyelitis in children and adults: A focused review emphasizing new developments. Mult Scler J 2021; 27: 1153–60.
https://doi.org/10.1177/1352458520929627.
Google Scholar |
SAGE Journals24. Libdeh, AA, Goodkin, HP, Ramirez-Montealegre, D, et al. Acute disseminated encephalomyelitis: a gray distinction. Pediatr Neurol 2017; 68: 64–7.
Google Scholar |
Crossref |
Medline25. Abu Libdeh, A, Goodkin, HP, Ramirez-Montealegre, D, et al. Acute disseminated encephalomyelitis: A gray distinction. Pediatr Neurol 2017; 68: 64–7.
https://doi.org/10.1016/j.pediatrneurol.2016.12.006.
Google Scholar |
Crossref |
Medline26. Ketelslegers, IA, Visser, I, Neuteboom, RF, et al. Disease course and outcome of acute disseminated encephalomyelitis is more severe in adults than in children. Mult Scler J 2011; 17: 441–8.
https://doi.org/10.1177/1352458510390068.
Google Scholar |
SAGE Journals |
ISI27. Hahn, JS, Pohl, D, Rensel, M, et al. Differential diagnosis and evaluation in pediatric multiple sclerosis. Neurology 2007; 68.
https://doi.org/10.1212/01.wnl.0000259403.31527.ef.
Google Scholar |
Crossref28. Kabakus, N, Gurgoze, MK, Yildirim, H, et al. Acute hemorrhagic leukoencephalitis manifesting as intracerebral hemorrhage associated with herpes simplex virus type I. J Trop Pediatr 2005; 51: 245–9.
https://doi.org/10.1093/tropej/fmh109.
Google Scholar |
Crossref |
Medline29. Jeganathan, N, Fox, M, Schneider, J, et al. Acute hemorrhagic leukoencephalopathy associated with influenza A (H1N1) virus. Neurocrit Care 2013; 19: 218–21.
https://doi.org/10.1007/s12028-013-9880-8.
Google Scholar |
Crossref |
Medline30. Hofer, M, Weber, A, Haffner, K, et al. Acute hemorrhagic leukoencephalitis (Hurst’s disease) linked to Epstein-Barr virus infection. Acta Neuropathol 2005; 109: 226–30.
https://doi.org/10.1007/s00401-004-0930-3.
Google Scholar |
Crossref |
Medline31. Karussis, D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: A critical review. J Autoimmun 2014; 48–49: 134–42.
https://doi.org/10.1016/j.jaut.2014.01.022.
Google Scholar |
Crossref |
Medline32. Wang, HS. Acute necrotising encephalopathy of childhood presenting with multifocal, symmetric brain lesions occurring outside Japan. J Neurol Neurosurg Psychiatry 1995; 59: 661.
https://doi.org/10.1136/jnnp.59.6.661.
Google Scholar |
Crossref |
Medline33. Lucchinetti, CF, Guo, Y, Popescu, BFG, et al. The pathology of an autoimmune astrocytopathy: Lessons learned from neuromyelitis optica. Brain Pathol 2014; 24: 83–97.
https://doi.org/10.1111/bpa.12099.
Google Scholar |
Crossref |
Medline |
ISI34. Ambrosius, W, Michalak, S, Kozubski, W, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: Current insights into the disease pathophysiology, diagnosis and management. Int J Mol Sci 2021; 22(1): 100.
Google Scholar35. Akaishi, T, Nakashima, I, Sato, DK, et al. Neuromyelitis optica spectrum disorders. Neuroimaging Clin N Am 2017; 27: 251–65.
https://doi.org/10.1016/j.nic.2016.12.010.
Google Scholar |
Crossref |
Medline36. Ramanathan, S, Prelog, K, Barnes, EH, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016; 22: 470–82.
https://doi.org/10.1177/1352458515593406.
Google Scholar |
SAGE Journals |
ISI37. Mariano, R, Messina, S, Roca-Fernandez, A, et al. Quantitative spinal cord MRI in MOG-antibody disease, neuromyelitis optica and multiple sclerosis. Brain 2021; 144: 198–212.
https://doi.org/10.1093/brain/awaa347.
Google Scholar |
Crossref |
Medline38. Weinshenker, BG, Wingerchuk, DM. Neuromyelitis spectrum disorders. Mayo Clin Proc 2017; 92: 663–79.
https://doi.org/10.1016/j.mayocp.2016.12.014.
Google Scholar |
Crossref |
Medline39. Biotti, D, Bonneville, F, Tournaire, E, et al. Optic neuritis in patients with anti-MOG antibodies spectrum disorder: MRI and clinical features from a large multicentric cohort in France. J Neurol 2017; 264: 2173–5.
https://doi.org/10.1007/s00415-017-8615-8.
Google Scholar |
Crossref |
Medline40. Masuda, H, Mori, M, Katayama, K, et al. Anti-aquaporin-4 antibody-seronegative NMO spectrum disorder with Baló’s concentric lesions. Intern Med 2013; 52: 1517–21.
https://doi.org/10.2169/internalmedicine.52.9330.
Google Scholar |
Crossref |
Medline41. Dörr, J, Krautwald, S, Wildemann, B, et al. Characteristics of Susac syndrome: A review of all reported cases. Nat Rev Neurol 2013; 9: 307–16.
https://doi.org/10.1038/nrneurol.2013.82.
Google Scholar |
Crossref |
Medline42. Kothari, N, Kuriyan, AE. Branched retinal artery occlusions and Susac syndrome. JAMA Neurol 2016; 73: 884–5.
https://doi.org/10.1001/jamaneurol.2016.0121.
Google Scholar |
Crossref |
Medline43. Kleffner, I, Dörr, J, Ringelstein, M, et al. Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 2016; 87: 1287–95.
https://doi.org/10.1136/jnnp-2016-314295.
Google Scholar |
Crossref |
Medline44. Coulette, S, Lecler, A, Saragoussi, E, et al. Diagnosis and prediction of relapses in Susac syndrome: A new use for MR postcontrast FLAIR leptomeningeal enhancement. Am J Neuroradiol 2019; 40: 1184–90.
https://doi.org/10.3174/ajnr.A6103.
Google Scholar |
Crossref |
Medline45. Vincent, A. Autoimmune channelopathies: new antibody-mediated disorders of the central nervous system. F1000 Biol Rep 2009; 1: 1–6.
https://doi.org/10.3410/b1-61.
Google Scholar |
Crossref |
Medline46. Lancaster, E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol 2016; 12: 1–13.
https://doi.org/10.3988/jcn.2016.12.1.1.
Google Scholar |
Crossref |
Medline |
ISI47. Kelley, BP, Patel, SC, Marin, HL, et al. Autoimmune encephalitis: Pathophysiology and imaging review of an overlooked diagnosis. Am J Neuroradiol 2017; 38: 1070–8.
https://doi.org/10.3174/ajnr.A5086.
Google Scholar |
Crossref |
Medline48. Irani, SR, Bera, K, Waters, P, et al. N-methyl-d-aspartate antibody encephalitis: Temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 2010; 133: 1655–67.
https://doi.org/10.1093/brain/awq113.
Comments (0)