Nervous System Sampling for General Toxicity and Neurotoxicity Studies in the Laboratory Minipig With Emphasis on the Göttingen Minipig

1. Nunoya, T, Shibuya, K, Saitoh, T, et al. Use of miniature pig for biomedical research, with reference to toxicologic studies. J Toxicol Pathol. 2007;20(3):125–132.
Google Scholar | Crossref2. Swindle, MM, Makin, A, Herron, AJ, Clubb, FJ, Frazier, KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356.
Google Scholar | SAGE Journals | ISI3. Swindle, MM, Smith, AC. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques. 3rd ed. CRC Press (Taylor & Francis); 2016.
Google Scholar4. Heining, P, Ruysschaert, T. The use of minipig in drug discovery and development: pros and cons of minipig selection and strategies to use as a preferred nonrodent species. Toxicol Pathol. 2016;44(3):467–473.
Google Scholar | SAGE Journals | ISI5. Rozkot, M, Václavková, E, Bělková, J. Minipigs as laboratory animals—review. Res Pig Breed. 2015;9(2):10–14.
Google Scholar6. Svendsen, O . The minipig in toxicology. Exp Toxicol Pathol. 2006;57(5-6):335–339.
Google Scholar | Crossref | Medline | ISI7. Colleton, C, Brewster, D, Chester, A, et al. The use of minipigs for preclinical safety assessment by the pharmaceutical industry: results of an IQ DruSafe minipig survey. Toxicol Pathol. 2016;44(3):458–466.
Google Scholar | SAGE Journals | ISI8. Hughes, HC . Swine in cardiovascular research. Lab Anim Sci. 1986;36(4):348–350.
Google Scholar | Medline9. Schuleri, KH, Boyle, AJ, Centola, M, et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp Med. 2008;58(6):568–579.
Google Scholar | Medline | ISI10. Stricker-Krongrad, A, Shoemake, C, Brocksmith, D, Liu, J, Hamlin, R, Bouchard, G. Comparative cardiovascular physiology and pathology in selected lineages of minipigs: relation to drug safety evaluation. Toxicol Res Appl. 2017;1(3):1–8.
Google Scholar11. Mahl, JA, Vogel, BE, Court, M, Kolopp, M, Roman, D, Nogues, V. The minipig in dermatotoxicology: methods and challenges. Exp Toxicol Pathol. 2006;57(5-6):341–345.
Google Scholar | Crossref | Medline | ISI12. Willard-Mack, C, Ramani, T, Auletta, C. Dermatotoxicology: safety evaluation of topical products in minipigs: study designs and practical considerations. Toxicol Pathol. 2016;44(3):382–390.
Google Scholar | SAGE Journals | ISI13. Stricker-Krongrad, A, Shoemake, CR, Liu, J, Brocksmith, D, Bouchard, G. The importance of minipigs in dermal safety assessment: an overview. Cutan Ocul Toxicol. 2017;36(2):105–113.
Google Scholar | Crossref | Medline14. Larsen, MO, Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 2004;45(3):303–313.
Google Scholar | Crossref | Medline15. Johansen, T, Hansen, HS, Richelsen, B, Malmlof, R. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med. 2001;51(2):150–155.
Google Scholar | Medline16. Christoffersen, B, Golozoubova, V, Pacini, G, Svendsen, O, Raun, K. The young Göttingen minipig as a model of childhood and adolescent obesity: influence of diet and gender. Obesity (Silver Spring). 2013;21(1):149–158.
Google Scholar | Crossref | Medline17. Schachtschneider, KM, Schwind, RM, Newson, J, et al. The Oncopig cancer model: an innovative large animal translational oncology platform. Front Oncol. 2017;7:190.
Google Scholar | Crossref | Medline18. Bourneuf, E . The MeLiM minipig: an original spontaneous model to explore cutaneous melanoma genetic basis. Front Genet. 2017;8:146.
Google Scholar | Crossref | Medline19. Isakson, SH, Rizzardi, AE, Coutts, AW, et al. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun Biol. 2018;1(1):158.
Google Scholar | Crossref | Medline20. Manno, RA, Grassetti, A, Oberto, G, Nyska, A, Ramot, Y. The minipig as a new model for the evaluation of doxorubicin-induced chronic toxicity. J Appl Toxicol. 2016;36(8):1060–1072.
Google Scholar | Crossref | Medline21. Mikkelsen, M, Moller, A, Jensen, LH, Pedersen, A, Harajehi, JB, Pakkenberg, H MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol. 1999;21(2):169–175.
Google Scholar | Crossref | Medline | ISI22. Lind, NM, Moustgaard, A, Jelsing, J, Vajta, G, Cumming, P, Hansen, AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev. 2007;31(5):728–751.
Google Scholar | Crossref | Medline | ISI23. Rasmussen, AD, Wegener, KM. Central and peripheral nervous system. In: McAnulty, PA, Dayan, AD, Ganderup, N-C, Hastings, KL, eds. The Minipig in Biomedical Research. CRC Press (Taylor & Francis); 2012:243–251.
Google Scholar24. Glud, AN, Hedegaard, C, Nielsen, MS, et al. Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Göttingen minipig CNS. Acta Neurobiol Exp (Wars). 2011;71(4):508–518.
Google Scholar | Medline25. Nielsen, MS, Glud, AN, Moller, A, et al. Continuous MPTP intoxication in the Göttingen minipig results in chronic parkinsonian deficits. Acta Neurobiol Exp (Wars). 2016;76(3):199–211.
Google Scholar | Medline26. Bech, J, Orlowski, D, Glud, AN, Dyrby, TB, Sørensen, JCH, Bjarkam, CR. Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system. Brain Struct Funct. 2020;225(3):1055–1071.
Google Scholar | Crossref | Medline27. Moore, AM, MacEwan, M, Santosa, KB, et al. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44(2):221–234.
Google Scholar | Crossref | Medline28. Howroyd, PC, Peter, B, de Rijk, E. Review of sexual maturity in the minipig. Toxicol Pathol. 2016;44(4):607–611.
Google Scholar | SAGE Journals | ISI29. de Rijk, E, van den Brink, H, Lensen, J, Lambregts, A, Lorentsen, H, Peter, B. Estrous cycle-dependent morphology in the reproductive organs of the female Göttingen minipig. Toxicol Pathol. 2014;42(8):1197–1211.
Google Scholar | SAGE Journals | ISI30. Peter, B, De Rijk, EP, Zeltner, A, Emmen, HH. Sexual maturation in the female Göttingen minipig. Toxicol Pathol. 2016;44(3):482–485.
Google Scholar | SAGE Journals | ISI31. Lorenzen, E, Follmann, F, Jungersen, G, Agerholm, JS. A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet Res. 2015;46(115):116.
Google Scholar | Crossref | Medline32. Dalgaard, L . Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92.
Google Scholar | Crossref | Medline | ISI33. Weaver, ML, Grossi, AB, Schutzsack, J, et al. Vehicle systems and excipients used in minipig drug development studies. Toxicol Pathol. 2016;44(3):367–372.
Google Scholar | SAGE Journals | ISI34. Jeppesen, G, Skydsgaard, M. Spontaneous background pathology in Göttingen minipigs. Toxicol Pathol. 2015;43(2):257–266.
Google Scholar | SAGE Journals | ISI35. Helke, KL, Nelson, KN, Sargeant, AM, et al. Background pathological changes in minipigs: A comparison of the incidence and nature among different breeds and populations of minipigs. Toxicol Pathol. 2016;44(3):325–337.
Google Scholar | SAGE Journals | ISI36. Vezzali, E, Manno, RA, Salerno, D, Oberto, G, Nyska, A, Ramot, Y. Spontaneous glomerulonephritis in Göttingen minipigs. Toxicol Pathol. 2011;39(4):700–705.
Google Scholar | SAGE Journals | ISI37. Simianer, H, Kohn, F. Genetic management of the Göttingen minipig population. J Pharmacol Toxicol Methods. 2010;62(3):221–226.
Google Scholar | Crossref | Medline38. Bode, G, Clausing, P, Gervais, F, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.
Google Scholar | Crossref | Medline | ISI39. van Mierlo, GJ, Cnubben, NHP, Wouters, D, et al. The minipig as an alternative non-rodent model for immunogenicity testing using the TNFα blockers adalimumab and infliximab. J Immunotoxicol. 2014;11(1):62–71.
Google Scholar | Crossref | Medline40. Descotes, J, Allais, L, Ancian, P, et al. Nonclinical evaluation of immunological safety in Göttingen minipigs: the CONFIRM initiative. Regul Toxicol Pharmacol. 2018;94:271–275.
Google Scholar | Crossref | Medline41. Bjarkam, CR, Glud, AN, Margolin, L, et al. Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig. Stereotact Funct Neurosurg. 2010;88(1):56–63.
Google Scholar | Crossref | Medline42. Fomsgaard, A, Karlsson, I, Gram, G, et al. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine. 2011;29(40):7067–7074.
Google Scholar | Crossref | Medline43. Dincer, Z, Jones, S, Haworth, R. Preclinical safety assessment of a DNA vaccine using particle-mediated epidermal delivery in domestic pig, minipig and mouse. Exp Toxicol Pathol. 2006;57(5-6):351–357.
Google Scholar | Crossref | Medline44. Niemann, H, Petersen, B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res. 2016;25(3):361–374.
Google Scholar | Crossref | Medline45. Semaan, M, Rotem, A, Barkai, U, Bornstein, S, Denner, J. Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation. 2013;20(3):148–156.
Google Scholar | Crossref | Medline46. EPA (U.S. Environmental Protection Agency) . Series 870—Health effects test guidelines. Published multiple. Updated June 10, 2021. Accessed June 10, 2020. https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-870-health-effects-test-guidelines
Google Scholar47. FDA (U.S. Food and Drug Administration) . Redbook 2000. Published 2000. Updated June 10, 2021. Accessed January 2, 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-other-stakeholders-redbook-2000#TOC
Google Scholar48. ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) . Safety guidelines. Published 2017. Updated June 10, 2021. Accessed December 6, 2017. https://ich.org.ich01.nine.ch/page/safety-guidelines
Google Scholar49. OECD (Organisation for Economic Co-operation and Development) . OECD guidelines for the testing of chemicals, section 4. Health effects. Published 2017. Updated June 10, 2021. Accessed December 6, 2017. http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788
Google Scholar50. Félix, B, Léger, M-E, Albe-Fessard, D, et al. Stereotaxic atlas of the pig brain. Brain Res Bull. 1999;49(1-2):1–137.
Google Scholar | Crossref | Medline51. Schmidt, V . Comparative Anatomy of the Pig Brain – an Integrative Magnetic Resonance Imaging (MRI) Study of the Porcine Brain with Special Emphasis on the external morphology of the cerebral cortex. Justus-Liebig-Universität Gießen; 2015. Accessed June 10, 2021. https://d-nb.info/1073547787/34
Google Scholar52. Dellman, H-D, McClure, RC. Porcine nervous system: central nervous system. In: Getty, R , ed. Sisson and Grossman’s The Anatomy of the Domestic Animals. Vol 2. 5th ed. W.B. Saunders; 1975:1360–1369.
Google Scholar53. Ghoshal, NG . Porcine nervous system: spinal nerves. In: Getty, R , ed. Sisson and Grossman’s The Anatomy of the Domestic Animals. vol 2. 5th ed. W.B. Saunders;

Comments (0)

No login
gif