1.
Nunoya, T, Shibuya, K, Saitoh, T, et al. Use of miniature pig for biomedical research, with reference to toxicologic studies. J Toxicol Pathol. 2007;20(3):125–132.
Google Scholar |
Crossref2.
Swindle, MM, Makin, A, Herron, AJ, Clubb, FJ, Frazier, KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356.
Google Scholar |
SAGE Journals |
ISI3.
Swindle, MM, Smith, AC. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques. 3rd ed. CRC Press (Taylor & Francis); 2016.
Google Scholar4.
Heining, P, Ruysschaert, T. The use of minipig in drug discovery and development: pros and cons of minipig selection and strategies to use as a preferred nonrodent species. Toxicol Pathol. 2016;44(3):467–473.
Google Scholar |
SAGE Journals |
ISI5.
Rozkot, M, Václavková, E, Bělková, J. Minipigs as laboratory animals—review. Res Pig Breed. 2015;9(2):10–14.
Google Scholar6.
Svendsen, O . The minipig in toxicology. Exp Toxicol Pathol. 2006;57(5-6):335–339.
Google Scholar |
Crossref |
Medline |
ISI7.
Colleton, C, Brewster, D, Chester, A, et al. The use of minipigs for preclinical safety assessment by the pharmaceutical industry: results of an IQ DruSafe minipig survey. Toxicol Pathol. 2016;44(3):458–466.
Google Scholar |
SAGE Journals |
ISI8.
Hughes, HC . Swine in cardiovascular research. Lab Anim Sci. 1986;36(4):348–350.
Google Scholar |
Medline9.
Schuleri, KH, Boyle, AJ, Centola, M, et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp Med. 2008;58(6):568–579.
Google Scholar |
Medline |
ISI10.
Stricker-Krongrad, A, Shoemake, C, Brocksmith, D, Liu, J, Hamlin, R, Bouchard, G. Comparative cardiovascular physiology and pathology in selected lineages of minipigs: relation to drug safety evaluation. Toxicol Res Appl. 2017;1(3):1–8.
Google Scholar11.
Mahl, JA, Vogel, BE, Court, M, Kolopp, M, Roman, D, Nogues, V. The minipig in dermatotoxicology: methods and challenges. Exp Toxicol Pathol. 2006;57(5-6):341–345.
Google Scholar |
Crossref |
Medline |
ISI12.
Willard-Mack, C, Ramani, T, Auletta, C. Dermatotoxicology: safety evaluation of topical products in minipigs: study designs and practical considerations. Toxicol Pathol. 2016;44(3):382–390.
Google Scholar |
SAGE Journals |
ISI13.
Stricker-Krongrad, A, Shoemake, CR, Liu, J, Brocksmith, D, Bouchard, G. The importance of minipigs in dermal safety assessment: an overview. Cutan Ocul Toxicol. 2017;36(2):105–113.
Google Scholar |
Crossref |
Medline14.
Larsen, MO, Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 2004;45(3):303–313.
Google Scholar |
Crossref |
Medline15.
Johansen, T, Hansen, HS, Richelsen, B, Malmlof, R. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med. 2001;51(2):150–155.
Google Scholar |
Medline16.
Christoffersen, B, Golozoubova, V, Pacini, G, Svendsen, O, Raun, K. The young Göttingen minipig as a model of childhood and adolescent obesity: influence of diet and gender. Obesity (Silver Spring). 2013;21(1):149–158.
Google Scholar |
Crossref |
Medline17.
Schachtschneider, KM, Schwind, RM, Newson, J, et al. The Oncopig cancer model: an innovative large animal translational oncology platform. Front Oncol. 2017;7:190.
Google Scholar |
Crossref |
Medline18.
Bourneuf, E . The MeLiM minipig: an original spontaneous model to explore cutaneous melanoma genetic basis. Front Genet. 2017;8:146.
Google Scholar |
Crossref |
Medline19.
Isakson, SH, Rizzardi, AE, Coutts, AW, et al. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun Biol. 2018;1(1):158.
Google Scholar |
Crossref |
Medline20.
Manno, RA, Grassetti, A, Oberto, G, Nyska, A, Ramot, Y. The minipig as a new model for the evaluation of doxorubicin-induced chronic toxicity. J Appl Toxicol. 2016;36(8):1060–1072.
Google Scholar |
Crossref |
Medline21.
Mikkelsen, M, Moller, A, Jensen, LH, Pedersen, A, Harajehi, JB, Pakkenberg, H MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol. 1999;21(2):169–175.
Google Scholar |
Crossref |
Medline |
ISI22.
Lind, NM, Moustgaard, A, Jelsing, J, Vajta, G, Cumming, P, Hansen, AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev. 2007;31(5):728–751.
Google Scholar |
Crossref |
Medline |
ISI23.
Rasmussen, AD, Wegener, KM. Central and peripheral nervous system. In: McAnulty, PA, Dayan, AD, Ganderup, N-C, Hastings, KL, eds. The Minipig in Biomedical Research. CRC Press (Taylor & Francis); 2012:243–251.
Google Scholar24.
Glud, AN, Hedegaard, C, Nielsen, MS, et al. Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Göttingen minipig CNS. Acta Neurobiol Exp (Wars). 2011;71(4):508–518.
Google Scholar |
Medline25.
Nielsen, MS, Glud, AN, Moller, A, et al. Continuous MPTP intoxication in the Göttingen minipig results in chronic parkinsonian deficits. Acta Neurobiol Exp (Wars). 2016;76(3):199–211.
Google Scholar |
Medline26.
Bech, J, Orlowski, D, Glud, AN, Dyrby, TB, Sørensen, JCH, Bjarkam, CR. Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system. Brain Struct Funct. 2020;225(3):1055–1071.
Google Scholar |
Crossref |
Medline27.
Moore, AM, MacEwan, M, Santosa, KB, et al. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44(2):221–234.
Google Scholar |
Crossref |
Medline28.
Howroyd, PC, Peter, B, de Rijk, E. Review of sexual maturity in the minipig. Toxicol Pathol. 2016;44(4):607–611.
Google Scholar |
SAGE Journals |
ISI29.
de Rijk, E, van den Brink, H, Lensen, J, Lambregts, A, Lorentsen, H, Peter, B. Estrous cycle-dependent morphology in the reproductive organs of the female Göttingen minipig. Toxicol Pathol. 2014;42(8):1197–1211.
Google Scholar |
SAGE Journals |
ISI30.
Peter, B, De Rijk, EP, Zeltner, A, Emmen, HH. Sexual maturation in the female Göttingen minipig. Toxicol Pathol. 2016;44(3):482–485.
Google Scholar |
SAGE Journals |
ISI31.
Lorenzen, E, Follmann, F, Jungersen, G, Agerholm, JS. A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet Res. 2015;46(115):116.
Google Scholar |
Crossref |
Medline32.
Dalgaard, L . Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92.
Google Scholar |
Crossref |
Medline |
ISI33.
Weaver, ML, Grossi, AB, Schutzsack, J, et al. Vehicle systems and excipients used in minipig drug development studies. Toxicol Pathol. 2016;44(3):367–372.
Google Scholar |
SAGE Journals |
ISI34.
Jeppesen, G, Skydsgaard, M. Spontaneous background pathology in Göttingen minipigs. Toxicol Pathol. 2015;43(2):257–266.
Google Scholar |
SAGE Journals |
ISI35.
Helke, KL, Nelson, KN, Sargeant, AM, et al. Background pathological changes in minipigs: A comparison of the incidence and nature among different breeds and populations of minipigs. Toxicol Pathol. 2016;44(3):325–337.
Google Scholar |
SAGE Journals |
ISI36.
Vezzali, E, Manno, RA, Salerno, D, Oberto, G, Nyska, A, Ramot, Y. Spontaneous glomerulonephritis in Göttingen minipigs. Toxicol Pathol. 2011;39(4):700–705.
Google Scholar |
SAGE Journals |
ISI37.
Simianer, H, Kohn, F. Genetic management of the Göttingen minipig population. J Pharmacol Toxicol Methods. 2010;62(3):221–226.
Google Scholar |
Crossref |
Medline38.
Bode, G, Clausing, P, Gervais, F, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.
Google Scholar |
Crossref |
Medline |
ISI39.
van Mierlo, GJ, Cnubben, NHP, Wouters, D, et al. The minipig as an alternative non-rodent model for immunogenicity testing using the TNFα blockers adalimumab and infliximab. J Immunotoxicol. 2014;11(1):62–71.
Google Scholar |
Crossref |
Medline40.
Descotes, J, Allais, L, Ancian, P, et al. Nonclinical evaluation of immunological safety in Göttingen minipigs: the CONFIRM initiative. Regul Toxicol Pharmacol. 2018;94:271–275.
Google Scholar |
Crossref |
Medline41.
Bjarkam, CR, Glud, AN, Margolin, L, et al. Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig. Stereotact Funct Neurosurg. 2010;88(1):56–63.
Google Scholar |
Crossref |
Medline42.
Fomsgaard, A, Karlsson, I, Gram, G, et al. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine. 2011;29(40):7067–7074.
Google Scholar |
Crossref |
Medline43.
Dincer, Z, Jones, S, Haworth, R. Preclinical safety assessment of a DNA vaccine using particle-mediated epidermal delivery in domestic pig, minipig and mouse. Exp Toxicol Pathol. 2006;57(5-6):351–357.
Google Scholar |
Crossref |
Medline44.
Niemann, H, Petersen, B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res. 2016;25(3):361–374.
Google Scholar |
Crossref |
Medline45.
Semaan, M, Rotem, A, Barkai, U, Bornstein, S, Denner, J. Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation. 2013;20(3):148–156.
Google Scholar |
Crossref |
Medline46.
EPA (U.S. Environmental Protection Agency) . Series 870—Health effects test guidelines. Published multiple. Updated June 10, 2021. Accessed June 10, 2020.
https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-870-health-effects-test-guidelines Google Scholar47.
FDA (U.S. Food and Drug Administration) . Redbook 2000. Published 2000. Updated June 10, 2021. Accessed January 2, 2020.
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-other-stakeholders-redbook-2000#TOC Google Scholar48.
ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) . Safety guidelines. Published 2017. Updated June 10, 2021. Accessed December 6, 2017.
https://ich.org.ich01.nine.ch/page/safety-guidelines Google Scholar49.
OECD (Organisation for Economic Co-operation and Development) . OECD guidelines for the testing of chemicals, section 4. Health effects. Published 2017. Updated June 10, 2021. Accessed December 6, 2017.
http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788 Google Scholar50.
Félix, B, Léger, M-E, Albe-Fessard, D, et al. Stereotaxic atlas of the pig brain. Brain Res Bull. 1999;49(1-2):1–137.
Google Scholar |
Crossref |
Medline51.
Schmidt, V . Comparative Anatomy of the Pig Brain – an Integrative Magnetic Resonance Imaging (MRI) Study of the Porcine Brain with Special Emphasis on the external morphology of the cerebral cortex. Justus-Liebig-Universität Gießen; 2015. Accessed June 10, 2021.
https://d-nb.info/1073547787/34 Google Scholar52.
Dellman, H-D, McClure, RC. Porcine nervous system: central nervous system. In: Getty, R , ed. Sisson and Grossman’s The Anatomy of the Domestic Animals. Vol 2. 5th ed. W.B. Saunders; 1975:1360–1369.
Google Scholar53.
Ghoshal, NG . Porcine nervous system: spinal nerves. In: Getty, R , ed. Sisson and Grossman’s The Anatomy of the Domestic Animals. vol 2. 5th ed. W.B. Saunders;
Comments (0)