Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci. 2008;121:255–64. https://doi.org/10.1242/jcs.006064.
CAS Article PubMed Google Scholar
2.Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011;17(5):349–64. https://doi.org/10.1089/ten.TEB.2011.0238.
CAS Article PubMed PubMed Central Google Scholar
3.Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–9. https://doi.org/10.1021/nn406590q.
CAS Article PubMed PubMed Central Google Scholar
4.Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive survey on nanobiomaterials for bone tissue engineering applications. Nanomaterials (Basel). 2020;10:2019. https://doi.org/10.3390/nano10102019.
5.•• Martins A, Reis RL, Neves NM. Biofunctional nanostructured systems for regenerative medicine. Nanomedicine (Lond). 2020;15:1545–9. https://doi.org/10.2217/nnm-2020-0147.. (This review discusses various approaches including controlled production and surface modification of nanostructures to achieve personalized tissue engineering.)
6.Fernández-Urrusuno R, Fattal E, Rodrigues JM Jr, Féger J, Bedossa P, Couvreur PJ. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. Biomed Mater Res. 1996;31:401–8. https://doi.org/10.1002/(SICI)1097-4636(199607)31:3%3c401::AID-JBM15%3e3.0.CO;2-L.
7.Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC. Nanotechnology in bone tissue engineering. Nanomedicine. 2015;11:1253–63. https://doi.org/10.1016/j.nano.2015.02.013.
CAS Article PubMed Google Scholar
8.Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34. https://doi.org/10.1016/j.actbio.2009.10.031.
CAS Article PubMed Google Scholar
9.Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: a promise to heal from within. Life Sci. 2021;268:118932. https://doi.org/10.1016/j.lfs.2020.118932.
CAS Article PubMed Google Scholar
10.Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7:209–27. https://doi.org/10.1098/rsif.2009.0379.
CAS Article PubMed Google Scholar
11.Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008;2:81–96. https://doi.org/10.1002/term.74.
CAS Article PubMed Google Scholar
12.Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976). 2006;31(5):542–7.
13.Ferrand A, Eap S, Richert L, Lemoine S, Kalaskar D, Demoustier-Champagne S, Atmani H, Mély Y, Fioretti F, Schlatter G, Kuhn L, Ladam G, Benkirane-Jessel N. Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-based nanoreservoirs of growth factors. Macromol Biosci. 2014;14(1):45–55. https://doi.org/10.1097/01.brs.0000201424.27509.72.
CAS Article PubMed Google Scholar
14.•• De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5(4):197–211. https://doi.org/10.1093/rb/rby013.. (This is a review that focuses on various growth factor delivery approaches used in bone tissue engineering.)
CAS Article PubMed PubMed Central Google Scholar
15.Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10:141–62. https://doi.org/10.1016/0169-409X(93)90046-7.
16.Nyberg E, Holmes C, Witham T, Grayson WL. Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res. 2016;6:184–94. https://doi.org/10.1007/s13346-015-0233-3.
CAS Article PubMed Google Scholar
17.Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007;121:91–9.
18.Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen HP, Laub M, Uludağ H. Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnol Prog. 2008;24:945–56. https://doi.org/10.1002/btpr.12.
CAS Article PubMed Google Scholar
19.Park KH, Kim H, Moon S, Na K. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J Biosci Bioeng. 2009;108:530–7. https://doi.org/10.1016/j.jbiosc.2009.05.021.
CAS Article PubMed Google Scholar
20.Wang B, Guo Y, Chen X, et al. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2. Int J Nanomedicine. 2018;13:7395–408. https://doi.org/10.2147/IJN.S180859 (Published 2018 Nov 12).
CAS Article PubMed PubMed Central Google Scholar
21.Min Q, Yu X, Liu J, Wu J, Wan Y. Chitosan-based hydrogels embedded with hyaluronic acid complex nanoparticles for controlled delivery of bone morphogenetic protein-2. Pharmaceutics. 2019;11(5):214. https://doi.org/10.3390/pharmaceutics11050214.
CAS Article PubMed Central Google Scholar
22.Wang Z, Wang K, Lu X, Li M, Liu H, Xie C, Meng F, Jiang O, Li C, Zhi W. BMP-2 encapsulated polysaccharide nanoparticle modified biphasic calcium phosphate scaffolds for bone tissue regeneration. J Biomed Mater Res A. 2015;103:1520–32. https://doi.org/10.1002/jbm.a.35282.
CAS Article PubMed Google Scholar
23.Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28:2087–96. https://doi.org/10.1016/j.biomaterials.2006.12.028.
CAS Article PubMed PubMed Central Google Scholar
24.De Witte TM, Wagner AM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Degradable poly(methyl methacrylate)-co-methacrylic acid nanoparticles for controlled delivery of growth factors for bone regeneration. Tissue Eng Part A. 2020;26:1226–42. https://doi.org/10.1089/ten.tea.2020.0010.
CAS Article PubMed Google Scholar
25.Udomluck N, Lee H, Hong S, Lee S-H, Park H. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci. 2020;520:146311. https://doi.org/10.1016/j.apsusc.2020.146311.
26.Dyondi D, Webster TJ, Banerjee R. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomedicine. 2013;8:47–59. https://doi.org/10.2147/IJN.S37953.
CAS Article PubMed Google Scholar
27.Min Q, Liu J, Zhang Y, Yang B, Wan Y, Wu J. Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanoparticles for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics. 2020;12(7):613. https://doi.org/10.3390/pharmaceutics12070613.
CAS Article PubMed Central Google Scholar
28.Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol. 2021;172:381–93. https://doi.org/10.1016/j.ijbiomac.2021.01.069.
CAS Article PubMed Google Scholar
29.Wei P, Xu Y, Gu Y, Yao Q, Li J, Wang L. IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering. Drug Deliv. 2020;27:1106–14. https://doi.org/10.1080/10717544.2020.1797239.
CAS Article PubMed PubMed Central Google Scholar
30.Tan Q, Tang H, Hu JG, Hu YR, Zhou XM, Tao YM. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine. 2011;6:929–42. https://doi.org/10.2147/IJN.S18753.
CAS Article PubMed PubMed Central Google Scholar
31.Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Robert Taylor W, Guldberg RE. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298:H1959–65. https://doi.org/10.1152/ajpheart.00199.2009.
CAS Article PubMed PubMed Central Google Scholar
32.Chung Y, Kim SK, Lee YK, Park SJ, Cho KO, Yuk SH, Tae G, Kim YH. Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J Control Release. 2010;143(3):282–9. https://doi.org/10.1016/j.jconrel.2010.01.010.
CAS Article PubMed Google Scholar
33.Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif Cells Nanomed Biotechnol. 2018;46:1799–808. https://doi.org/10.1080/21691401.2017.1392970.
CAS Article PubMed Google Scholar
34.Izadifar M, Kelly ME, Chen X. Regulation of sequential release of growth factors using bilayer polymeric nanoparticles for cardiac tissue engineering. Nanomedicine (Lond). 2016;11:3237–59. https://doi.org/10.2217/nnm-2016-0220.
35.Böcking D, Wiltschka O, Niinimäki J, Shokry H, Brenner R, Lindén M, Sahlgren C. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation. Nanoscale. 2014;6(3):1490–8. https://doi.org/10.1039/c3nr04022d.
CAS Article PubMed Google Scholar
36.Chen X, Gu S, Chen BF, Shen WL, Yin Z, Xu GW, Hu JJ, Zhu T, Li G, Wan C, Ouyang HW, Lee TL, Chan WY. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials. 2015;53:239–50.
Comments (0)