1.
Vandecraen, J, Chandler, M, Aertsen, A, Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43:709-730.
Google Scholar |
Crossref |
Medline2.
Mahillon, J, Chandler, M. Insertion sequences. Microbiol Mol Biol Rev. 1998;62:725-774.
Google Scholar |
Crossref |
Medline |
ISI3.
Siguier, P, Gourbeyre, E, Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38:865-891.
Google Scholar |
Crossref |
Medline4.
Hickman, AB, Dyda, F. Mechanisms of DNA transposition. Microbiol Spectr. 2015;3:MDNA3-0034-2014.
Google Scholar |
Crossref |
Medline5.
Guerillot, R, Siguier, P, Gourbeyre, E, Chandler, M, Glaser, P. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol. 2014;6:260-272.
Google Scholar |
Crossref |
Medline6.
Siguier, P, Gourbeyre, E, Varani, A, Ton-Hoang, B, Chandler, M. Everyman’s guide to bacterial insertion sequences. Microbiol Spectr. 2015;3:MDNA3-0030-2014.
Google Scholar |
Crossref7.
Chandler, M, Fayet, O, Rousseau, P, Ton Hoang, B, Duval-Valentin, G. Copy-out-paste-in transposition of IS911: a major transposition pathway. Microbiol Spectr. 2015;3:MDNA3-0031-2014.
Google Scholar |
Crossref8.
Siguier, P, Perochon, J, Lestrade, L, Mahillon, J, Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32-D36.
Google Scholar |
Crossref |
Medline9.
Robinson, DG, Lee, M-C, Marx, CJ. Oasis: an automatic program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acid Res. 2012;40:e174.
Google Scholar |
Crossref |
Medline10.
Biswas, A, Gauthier, DT, Ranjan, D, Zubair, M. ISQuest: finding insertion sequences in prokaryotics sequence fragment data. Bioinformatics. 2015;31:3406-3412.
Google Scholar |
Crossref |
Medline11.
Al-Nayyef, H, Guyeux, C, Bahi, JM. A pipeline for insertion sequence detection and study for bacterial genome. arXiv:1706.08267v1, 2017,
https://arxiv.org/pdf/1706.08267.pdf.
Google Scholar12.
Durrant, MG, Li, MM, Siranosian, BA, Montgomery, SB, Bhatt, AS. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe. 2020;27:140-153.
Google Scholar |
Crossref |
Medline13.
Siguier, P, Gourbeyre, E, Chandler, M. Known knowns, known unknowns and unknown unknowns in prokaryotic transposition. Curr Opin Microbiol. 2017;38:171-180.
Google Scholar |
Crossref |
Medline14.
Narumi, I, Cherdchu, K, Kitayama, S, Watanabe, H. The Deinococcus radiodurans uvrA gene: identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene. 1997;198:115-126.
Google Scholar |
Crossref |
Medline15.
Mennecier, S, Servant, P, Coste, G, Bailone, A, Sommer, S. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol Microbiol. 2006;59:317-325.
Google Scholar |
Crossref |
Medline16.
Pasternak, C, Dulermo, R, Ton-Hoang, B, et al. ISDra2 transpositionin Deinococcus radiodurans is downregulated by TnpB. Mol Microbiol. 2013;88:443-455.
Google Scholar |
Crossref |
Medline17.
Lee, C, Choi, N, Bae, MK, Choo, K, Lee, S-J. Transposition of insertion sequences was triggered by oxidative stress in radiation-resistant bacterium Deinococcus geothermalis. Microorganisms. 2019;7:E446.
Google Scholar |
Crossref |
Medline18.
Lee, C, Choo, K, Lee, S-J. Active transposition of insertion sequences by oxidative stress in Deinococcus geothermalis. Front Microbiol. 2020;11:558747.
Google Scholar |
Crossref |
Medline19.
Oberto, J. SyntTax: a web server linking synteny to prokaryotic taxonomy. BMC Bioinformatics. 2013;14:4.
Google Scholar |
Crossref |
Medline20.
Haug-Baltzell, A, Stephenes, SA, Davey, S, Scheidegger, CE, Lyons, E. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics. 2017;33:2197-2198.
Google Scholar |
Crossref |
Medline21.
Noe, L, Kucherov, G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33:w540-w543.
Google Scholar |
Crossref |
Medline22.
Talwar, C, Singh, AK, Singh, DN, et al. Draft genome sequence of Deinococcus sp. S9, isolated from microbial mat deposits of hot springs located atop the Himalaya ranges at Manikaran, India. Microbiol Res Announ. 2019;8:e00316-19.
Google Scholar |
Medline23.
Harmer, CJ, Hall, RM. An analysis of the IS6/IS26 family of insertion sequences: is it a single family? Microb Genom. 2019;5:e000291.
Google Scholar24.
Varani, A, He, S, Siguier, P, Ross, K, Chandler, M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA. 2021;12:11.
Google Scholar |
Crossref |
Medline25.
He, S, Corneloup, A, Guynet, C, et al. The IS200/IS605 family and “peel and paste” single-strand transposition mechanism. Microbiol Spectr. 2015;3:MDNA3-0039-2014.
Google Scholar |
Crossref |
Medline26.
Blesa, A, Sanchez, M, Sacristan-Horcajada, E, Fuente, SG, Peiro, R, Berenguer, J. Into the Thermus mobilome: presence, diversity and recent activities of insertion sequences across Thermus spp. Microorganisms. 2019;7:25.
Google Scholar |
Crossref27.
Eisen, JA, Heidelberg, JF, White, O, Salzberg, SL. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 2000;1:RESEARCH0011.
Google Scholar |
Crossref28.
Touchon, M, Rocha, EPC. Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol. 2007;24:969-981.
Google Scholar |
Crossref |
Medline29.
Sawyer, SA, Dykhuizen, DE, DuBose, RF, et al. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics. 1987;115:51-63.
Google Scholar30.
Sousa, A, Bourgard, C, Wahl, LM, Gordo, I. Rates of transposition in Escherichia coli. Biol Lett. 2018;9:20130838.
Google Scholar31.
Wright, MS, Mountain, S, Beeri, K, Adams, MD. Assessment of insertion sequence mobilization as an adaptive response to oxidative stress in Acinetobacter baumannii using IS-seq. J Bacteriol. 2017;199:e00833-16.
Google Scholar |
Crossref |
Medline32.
Adams, MD, Bishop, B, Wright, MS. Quantitative assessment of insertion sequence impact on bacterial genome architecture. Microb Genom. 2016;2:e000062. doi:
10.1099/mgen.0.000062. Google Scholar |
Crossref |
Medline33.
Qiu, N, He, J, Wang, Y, Cheng, G, Li, M, Yu, Z. Prevalence and diversity of insertion sequences in the genome of Bacillus thuringensis YBT-1520 and comparison with other Bacillus cereus group members. FEMS Microbiol Lett. 2010;310:9-16.
Google Scholar |
Crossref |
Medline34.
Fayad, N, Awad, MK, Mahillon, J. Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics. 2019;20:436.
Google Scholar |
Crossref |
Medline35.
Thabet, S, Souissi, N. Transposition mechanism, molecular characterization and evolution of IS6110, the specific evolutionary marker of Mycobacterium tuberculosis complex. Mol Biol Rep. 2017;44:25-34.
Google Scholar |
Crossref |
Medline36.
Gonzalo-Asensio, J, Perez, I, Aguilo, N, et al. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis complex lineages. PLoS Genet. 2018;14:e1007282.
Google Scholar |
Crossref |
Medline37.
Eraclio, G, Ricci, G, Fortina, MG. Insertion sequence elements in Lactococcus garvieae. Gene. 2015;555:291-296.
Google Scholar38.
Ohtsubo, Y, Genka, H, Komatsu, H, Nagata, Y, Tsuda, M. High-temperature-induced transposition of insertion elements in Burkholderia multivorans ATCC17616. Appl Environ Microbiol. 2005;71:1822-1828.
Google Scholar |
Crossref |
Medline39.
de Sousa, LP . Mobile genetic elements in Pseudomonas stutzeri. Curr Microbiol. 2020;77:179-184.
Google Scholar |
Crossref |
Medline40.
Pasternak, C, Ton-Hoang, B, Coste, G, Bailone, A, Chandler, M, Sommer, S. Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet. 2010;6:e1000799.
Google Scholar |
Crossref |
Medline41.
Brim, H, Venkateswaran, A, Kostandarithes, HM, Fredrickson, JK, Daly, MJ. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol. 2003;69:4575-4582.
Google Scholar |
Crossref |
Medline42.
Makarova, KS, Omelchenko, MV, Gaidamakova, EK, et al. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE. 2007;2:e955.
Google Scholar |
Crossref |
Medline43.
Nyerges, Á, Bálint, B, Cseklye, J, Nagy, I, Pál, C, Fehér, T. CRISPR-interference-based modulation of mobile genetic elements in bacteria. Synth Biol (Oxford). 2019;4:ysz008.
Google Scholar
Comments (0)