Anderson, S. R., Easter, K., Goupell, M. J. (2019). Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. The Journal of the Acoustical Society of America, 146, 3232–3254.
https://doi.org/10.1121/1.5130384 Google Scholar |
Crossref |
Medline Archer-Boyd, A. W., Carlyon, R. P. (2019). Simulations of the effect of unlinked cochlear-implant automatic gain control and head movement on interaural level differences. The Journal of the Acoustical Society of America, 145(3), 1389–1400.
https://doi.org/10.1121/1.5093623 Google Scholar |
Crossref |
Medline Aronoff, J., Yoon, Y., Freed, D., Vermiglio, A., Pal, I., Soli, S. (2010). The use of interaural time and level difference cues by bilateral cochlear implant users. The Journal of the Acoustical Society of America, 127(3), EL87–EL92.
https://doi.org/10.1121/1.3298451 Google Scholar |
Crossref |
Medline Bernstein, J. G. W., Goupell, M. J., Schuchman, G. I., Rivera, A. L., Brungart, D. S. (2016). Having two ears facilitates the perceptual separation of concurrent talkers for bilateral and single-sided deaf cochlear implantees. Ear and Hearing, 37(3), 289–302.
https://doi.org/10.1097/AUD.0000000000000284 Google Scholar |
Crossref |
Medline Bernstein, L. R., Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” The Journal of the Acoustical Society of America, 112(3), 1026–1036.
https://doi.org/10.1121/1.1497620 Google Scholar |
Crossref |
Medline |
ISI Blauert, J. (1972). On the lag of lateralization caused by interaural time and intensity differences. International Journal of Audiology, 11(5-6), 265–270.
https://doi.org/10.3109/00206097209072591 Google Scholar |
Crossref Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization (Rev. ed.). MIT Press.
https://doi.org/10.7551/mitpress/6391.001.0001 Google Scholar Bonnard, D., Lautissier, S., Bosset-Audoit, A., Coriat, G., Beraha, M., Maunoury, A., Martel, J., Darrouzet, V., Bébéar, J. P., & Dauman, R. (2013). Comparison between bilateral cochlear implants and Neurelec Digisonic(®) SP binaural cochlear implant: Speech perception, sound localization and patient self-assessment. Audiology & Neurotology, 18(3), 171–183.
https://doi.org/10.1159/000346933 Google Scholar |
Crossref |
Medline Brown, A. D., Benichoux, V., Jones, H. G., Anbuhl, K. L., Tollin, D. J. (2018). Spatial variation in signal and sensory precision both constrain auditory acuity at high frequencies. Hearing Research, 370, 65–73.
Google Scholar |
Crossref |
Medline Brown, A. D., Rodriguez, F. A., Cory, D. F. P., Goupell, M. J., Tollin, D. J. (2016). Time-varying distortions of binaural information by bilateral hearing aids. Trends in Hearing, 20, 1–15.
https://doi.org/10.1177/2331216516668303 Google Scholar |
SAGE Journals Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25(5), 975–979.
https://doi.org/10.1121/1.1907229 Google Scholar |
Crossref |
ISI Cochlear Limited . (2018). Custom sound 5.2: Clinical guidance document.
Google Scholar Dennison, S. R., Kan, A., Takkar, T., Litovsky, R. Y. (2019, July). A binaural advanced combination encoder strategy for sound localization with the CCi-mobile research platform [Poster presentation]. Conference on Implantable Auditory Prostheses, Lake Tahoe, CA, United States.
Google Scholar Dorman, M. F., Loiselle, L., Stohl, J., Yost, W. A., Spahr, A., Brown, C., Cook, S. (2014). Interaural level differences and sound source localization for bilateral cochlear implant patients. Ear and Hearing, 35(6), 633–640.
https://doi.org/10.1097/AUD.0000000000000057 Google Scholar |
Crossref |
Medline |
ISI Durlach, N. I. (1963). Equalization and cancellation theory of binaural masking‐level differences. The Journal of the Acoustical Society of America, 35(8), 1206–1218.
https://doi.org/10.1121/1.1918675 Google Scholar |
Crossref |
ISI Feddersen, W. E., Sandel, T. T., Teas, D. C., Jeffress, L. A. (1957). Localization of High‐Frequency tones. The Journal of the Acoustical Society of America, 29(9), 988–991.
https://doi.org/10.1121/1.1909356 Google Scholar |
Crossref Gajecki, T., Nogueira, W. (2020). The effect of synchronized linked band selection on speech intelligibility of bilateral cochlear implant users. Hearing Research, 396, 1–11.
https://doi.org/10.1016/j.heares.2020.108051 Google Scholar |
Crossref Grantham, D. W. (1984). Discrimination of dynamic interaural intensity differences. The Journal of the Acoustical Society of America, 76(1), 71–76.
https://doi.org/10.1121/1.391009 Google Scholar |
Crossref |
Medline Grantham, D. W., Ashmead, D. H., Ricketts, T. A., Haynes, D. S., Labadie, R. F. (2008). Interaural time and level difference thresholds for acoustically presented signals in post-lingually deafened adults fitted with bilateral cochlear implants using CIS+ processing. Ear and Hearing, 29(1), 33–44.
https://doi.org/10.1097/AUD.0b013e31815d636f Google Scholar |
Crossref |
Medline |
ISI Grantham, D. W., Ashmead, D. H., Ricketts, T. A., Labadie, R. F., Haynes, D. S. (2007). Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear and Hearing, 28(4), 524–541.
https://doi.org/10.1097/AUD.0b013e31806dc21a Google Scholar |
Crossref |
Medline |
ISI Henning, G. B. (1974). Detectability of interaural delay in high‐frequency complex waveforms. The Journal of the Acoustical Society of America, 55(1), 84–90.
https://doi.org/10.1121/1.1928135 Google Scholar |
Crossref |
Medline |
ISI Holder, J. T., Reynolds, S. M., Sunderhaus, L. W., Gifford, R. H. (2018). Current profile of adults presenting for preoperative cochlear implant evaluation. Trends in Hearing, 22, 1–16.
https://doi.org/10.1177/2331216518755288 Google Scholar |
SAGE Journals Institute of Electrical and Electronics Engineers. (1969).
IEEE recommended practice for speech quality measurements. IEEE Transactions on Audio and Electroacoustics,
17(3), 225–246.
https://doi.org/10.1109/TAU.1969.1162058 Google Scholar |
Crossref Kan, A., Litovsky, R. Y. (2015). Binaural hearing with electrical stimulation. Hearing Research, 322, 127–137.
https://doi.org/10.1016/j.heares.2014.08.005 Google Scholar |
Crossref |
Medline |
ISI Kan, A., Litovsky, R. Y., Smith, Z. (2017). Sensitivity to interaural timing differences using the advanced combinational encoder strategy. Journal of the Acoustical Society of America, 141, 3822.
https://doi.org/10.1121/1.4988479 Google Scholar |
Crossref Kan, A., Peng, Z. E., Moua, K., Litovsky, R. Y. (2018, November). A systematic assessment of a cochlear implant processor’s ability to encode interaural time differences [Paper presentation]. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Honolulu, Hawaii, USA. (APSIPA ASC) (pp. 382–387).
https://doi.org/10.23919/APSIPA.2018.8659694 Google Scholar Kayser, H., Ewert, S. D., Anemüller, J., Rohdenburg, T., Hohmann, V., Kollmeier, B. (2009). Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing, 2009(1), 157–210.
http://doi.org/10.1155/2009/298605 Google Scholar |
Crossref Kelvasa, D., Dietz, M. (2015). Auditory model-based sound direction estimation with bilateral cochlear implants. Trends in Hearing, 19, 1–16.
https://doi.org/10.1177/2331216515616378 Google Scholar |
SAGE Journals Kerber, S., Seeber, B. (2012). Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear and Hearing, 33(4), 445–457.
https://doi.org/10.1097/AUD.0b013e318257607b Google Scholar |
Crossref |
Medline |
ISI Kerber, S., Seeber, B. (2013). Localization in reverberation with cochlear implants. Journal of the Association for Research in Otolaryngology, 14(3), 379–392.
https://doi.org/10.1007/s10162-013-0378-z Google Scholar |
Crossref |
Medline Killan, C., Scally, A., Killan, E., Totten, C., Raine, C. (2019). Factors affecting sound-source localization in children with simultaneous or sequential bilateral cochlear implants. Ear and Hearing, 40(4), 870–877. 10.1097/AUD.0000000000000666
Google Scholar |
Crossref |
Medline Laback, B., Egger, K., Majdak, P. (2015). Perception and coding of interaural time differences with bilateral cochlear implants. Hearing Research, 322, 138–150.
https://doi.org/10.1016/j.heares.2014.10.004 Google Scholar |
Crossref |
Medline |
ISI Laback, B., Pok, S., Baumgartner, W., Deutsch, W. A., Schmid, K. (2004). Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors. Ear and Hearing, 25(5), 488–500.
https://doi.org/10.1097/01.aud.0000145124.85517.e8 Google Scholar |
Crossref |
Medline |
ISI Litovsky, R. Y., Jones, G. L., Agrawal, S., & van Hoesel, R. (2010). Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. The Journal of the Acoustical Society of America, 127(1), 400–414.
http://doi.org/10.1121/1.3257546 Google Scholar Litovsky, R. Y., Goupell, M. J., Godar, S., Grieco-Calub, T., Jones, G. L., Garadat, S. N., Agrawal, S., Kan, A., Todd, A., Hess, C., & Misurelli, S. (2012). Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. Journal of the American Academy of Audiology, 23(6), 476–494.
https://doi.org/10.3766/jaaa.23.6.9 Google Scholar |
Crossref |
Medline |
ISI Litovsky, R. Y., Goupell, M. J., Popper, A. N., Fay, R. (2021). Binaural hearing. Springer International Publishing.
Google Scholar |
Crossref Loizou, P. C., Hu, Y., Litovsky, R., Yu, G., Peters, R., Lake, J., Roland, P. (2009). Speech recognition by bilateral cochlear implant users in a cocktail-party setting. The Journal of the Acoustical Society of America, 125(1), 372–383.
https://doi.org/10.1121/1.3036175 Google Scholar |
Crossref |
Medline |
ISI Macaulay, E., Hartmann, W., Rakerd, B. (2010). The acoustical bright spot and mislocalization of tones by human listeners. The Journal of the Acoustical Society of America, 127(3), 1440–1449.
https://doi.org/10.1121/1.3294654 Google Scholar |
Crossref |
Medline |
ISI Macpherson, E. A., Middlebrooks, J. C. (2002). Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America, 111(5), 2219–2236.
https://doi.org/10.1121/1.1471898 Google Scholar |
Crossref |
Medline |
ISI Majdak, P., Goupell, M. J., Laback, B. (2011). Two-dimensional localization of virtual sound sources in cochlear-implant listeners. Ear and Hearing, 32(2), 198–208.
https://doi.org/10.1097/AUD.0b013e3181f4dfe9 Google Scholar |
Crossref |
Medline |
ISI Mayo, P. G., Goupell, M. J. (2020). Acoustic factors affecting interaural level differences for cochlear-implant users. The Journal of the Acoustical Society of America, 147(4), EL357–EL362.
https://doi.org/10.1121/10.0001088 Google Scholar |
Crossref |
Medline Mills, A. W. (1958). On the minimum audible angle. The Journal of the Acoustical Society of America, 30(4), 237–246.
https://doi.org/10.1121/1.1909553 Google Scholar |
Crossref |
ISI Mills, A. W. (1960). Lateralization of high‐frequency tones. The Journal of the Acoustical Society of America, 32(1), 132–134.
https://doi.org/10.1121/1.1907864 Google Scholar |
Crossref Noel, V. A., Eddington, D. K. (2013). Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences. The Journal of the Acoustical Society of America, 133, 2314–2328.
https://doi.org/10.1121/1.4794372 Google Scholar |
Crossref |
Medline Peters, B. R., Wyss, J., Manrique, M. (2010). Worldwide trends in bilateral cochlear implantation. The Laryngoscope, 120(S2), S17–S44.
https://doi.org/10.1002/lary.20859 Google Scholar |
Crossref |
Medline Potts, W. B., Ramanna, L., Perry, T., Long, C. J. (2019). Improving localization and speech reception in noise for bilateral cochlear implant recipients. Trends in Hearing, 23, 1–18.
https://doi.org/10.1177/2331216519831492 Google Scholar |
SAGE Journals Rayleigh, L. (1907). XII. on our perception of sound direction. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 13(74), 214–232.
https://doi.org/10.1080/14786440709463595 Google Scholar |
Comments (0)