Magnetic Nanostructures for Cancer Theranostic Applications

1.

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

2.

Cancer facts and figures 2020 (https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf) assessed on 03/12/2020.

3.•

Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol. 2017;9(6):555–65. This is an important research paper that demonstrates the in vivo biocompatibility as well as therapeutic efficacy studies of magnetic liposomes used for self-controlled hyperthermia.

4.••

Ahmed S, Rajak BL, Gogoi M, Sarma HD. Magnetic nanoparticles mediated cancer hyperthermia in smart healthcare for disease diagnosis and prevention. In: Paul S, Bhatia D, editors. : Elsevier; 2020. p. 153–73. This article reviews the basic principles behind different theranostic applications of magnetic nanoparticles.

5.

Feng SS, Chien S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci. 2003;58:4087–114.

CAS  Article  Google Scholar 

6.

Gogoi M, Kumar N, Patra S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In: Holban AM, Grumezescu AM, editors. Nanoarchitectonics for smart delivery and drug targeting: Elsevier; 2016. p. 743–72.

Chapter  Google Scholar 

7.

Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.

CAS  Article  Google Scholar 

8.

Hu F, Joshi HM, Dravid VP, Meade TJ. High-performance nanostructured MR contrast probes. Nanoscale. 2010;2(10):1884–91.

CAS  PubMed  PubMed Central  Article  Google Scholar 

9.

Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003;96(4):364–9.

CAS  PubMed  Article  PubMed Central  Google Scholar 

10.

Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperth. 1997;13(6):587–5.

CAS  Article  Google Scholar 

11.

Jordan A, Wust P, Scholz R, Tesche B, Fahling H, Mitrovics T, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperth. 1996;12:705–22.

CAS  Article  Google Scholar 

12.

Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000;60(23):6641–8.

CAS  PubMed  PubMed Central  Google Scholar 

13.

Alexiou C, Schmidt A, Klein R, Hulin P, Bergemann C, Arnold W. Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater. 2002;252:363–6.

CAS  Article  Google Scholar 

14.

Jaiswal MK, Gogoi M, Sarma HD, Banerjee R, Bahadur D. Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumor in experimental mice model. Biomater Sci. 2014;2(3):370–80.

CAS  PubMed  Article  PubMed Central  Google Scholar 

15.

McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008;3(2):169–80.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127(16):5732–3.

CAS  PubMed  Article  PubMed Central  Google Scholar 

17.

Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas LI, et al. Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chem Mater. 1999;11(11):3058–64.

CAS  Article  Google Scholar 

18.

Lee JH, Huh YM, Jun Y, Seo J, Jang J, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2004;13(1):95–9.

Article  CAS  Google Scholar 

19.

Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J. 2009. Critical enhancements of MRI contrast and hyperthermic effects by dopant controlled magnetic nanoparticles. Angew Chem Int Ed. 2009;48(7):1234–8.

CAS  Article  Google Scholar 

20.

Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, et al. Theranostic magnetic nanostructures (MNS) for cancer. Cancer Treat Res. 2015;166:51–83.

CAS  PubMed  PubMed Central  Article  Google Scholar 

21.

Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility. Pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818–78.

CAS  PubMed  Article  PubMed Central  Google Scholar 

22.

Schultz-Sikma EA, Joshi HM, Ma Q, MacRenaris KW, Eckermann AL, Dravid VP, et al. Probing the chemical stability of mixed ferrites: implications for magnetic resonance contrast agent design. Chem Mater. 2011;23(10):2657–64.

CAS  PubMed  PubMed Central  Article  Google Scholar 

23.

Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41(11):4306–34.

CAS  PubMed  Article  PubMed Central  Google Scholar 

24.

Xu CJ, Wang BD, Sun SH. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc. 2009;131(12):4216–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

25.

Kwon KW, Shim M. 2005. Gamma-Fe2O3/II–VI sulfide nanocrystal heterojunctions. J Am Chem Soc. 2005;127(29):10269–75.

CAS  PubMed  Article  PubMed Central  Google Scholar 

26.

Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 2009;7(4):861–7.

Article  CAS  Google Scholar 

27.

Swain AK, Pradhan L, Bahadur D. Polymer stabilized Fe3O4-graphene as an amphiphilic drug carrier for thermo-chemotherapy of cancer. ACS Appl Mater Interfaces. 2015;7:8013–22.

CAS  PubMed  Article  PubMed Central  Google Scholar 

28.

Lacava LM, Lacava ZGM, Azevedo RB, Chaves SB, Garcia VAP, Silva O, et al. Use of magnetic resonance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice. J Magn Magn Mater. 2002;252:367–9.

CAS  Article  Google Scholar 

29.

Lacava LM, Garcia VAP, Kuckelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater. 2004;272:2434–5.

Article  CAS  Google Scholar 

30.

Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomat. 2005;26:2685–94.

CAS  Article  Google Scholar 

31.

Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, et al. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mat Res Part B: Appl Biomat. 2007;81(1):12–22.

Article  CAS  Google Scholar 

32.

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

CAS  PubMed  Article  PubMed Central  Google Scholar 

33.

Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review J Drug Target. 1998;6(3):167–74.

CAS  PubMed  Article  PubMed Central  Google Scholar 

34.

Mohapatra J, Mitra A, Tyagi H, Bahadur D, Aslam M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale. 2015;7:9174–84.

CAS  PubMed  Article  PubMed Central  Google Scholar 

35.•

Saikia K, Bhattacharya K, Sen D, Kaushik SD, Biswas J, Lodha S, et al. Solvent evaporation driven entrapment of magnetic nanoparticles in mesoporous frame for designing a highly efficient MRI contrast probe. Appl Surf Sci. 2019;464:567–76. This article explains an important process to improve the efficiency of magnetic nanoparticles as an MRI contrast agent.

36.

Wáng YXJ, Idée J-M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg. 2017;7(1):88–122.

PubMed  PubMed Central  Article  Google Scholar 

37.

Wang YXJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.

PubMed  PubMed Central  Google Scholar 

38.

Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.

PubMed  PubMed Central  Article  Google Scholar 

39.

Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7:1929–34.

CAS  PubMed  Article  PubMed Central  Google Scholar 

40.

Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnology. 2008;6(2).

41.

Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperth. 2005;21:637–47.

CAS  Article  Google Scholar 

42.

Ito A, Fujioka M, Yoshida T, Wakamatsu K, Ito S, Yamashita T, et al. 4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Sci. 2007;98:424–30.

CAS  PubMed  Article  PubMed Central 

Comments (0)

No login
gif