Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.
CAS PubMed PubMed Central Article Google Scholar
2.Cancer facts and figures 2020 (https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf) assessed on 03/12/2020.
3.•Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol. 2017;9(6):555–65. This is an important research paper that demonstrates the in vivo biocompatibility as well as therapeutic efficacy studies of magnetic liposomes used for self-controlled hyperthermia.
4.••Ahmed S, Rajak BL, Gogoi M, Sarma HD. Magnetic nanoparticles mediated cancer hyperthermia in smart healthcare for disease diagnosis and prevention. In: Paul S, Bhatia D, editors. : Elsevier; 2020. p. 153–73. This article reviews the basic principles behind different theranostic applications of magnetic nanoparticles.
5.Feng SS, Chien S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci. 2003;58:4087–114.
6.Gogoi M, Kumar N, Patra S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In: Holban AM, Grumezescu AM, editors. Nanoarchitectonics for smart delivery and drug targeting: Elsevier; 2016. p. 743–72.
7.Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.
8.Hu F, Joshi HM, Dravid VP, Meade TJ. High-performance nanostructured MR contrast probes. Nanoscale. 2010;2(10):1884–91.
CAS PubMed PubMed Central Article Google Scholar
9.Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003;96(4):364–9.
CAS PubMed Article PubMed Central Google Scholar
10.Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperth. 1997;13(6):587–5.
11.Jordan A, Wust P, Scholz R, Tesche B, Fahling H, Mitrovics T, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperth. 1996;12:705–22.
12.Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000;60(23):6641–8.
CAS PubMed PubMed Central Google Scholar
13.Alexiou C, Schmidt A, Klein R, Hulin P, Bergemann C, Arnold W. Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater. 2002;252:363–6.
14.Jaiswal MK, Gogoi M, Sarma HD, Banerjee R, Bahadur D. Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumor in experimental mice model. Biomater Sci. 2014;2(3):370–80.
CAS PubMed Article PubMed Central Google Scholar
15.McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008;3(2):169–80.
CAS PubMed PubMed Central Google Scholar
16.Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127(16):5732–3.
CAS PubMed Article PubMed Central Google Scholar
17.Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas LI, et al. Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chem Mater. 1999;11(11):3058–64.
18.Lee JH, Huh YM, Jun Y, Seo J, Jang J, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2004;13(1):95–9.
19.Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J. 2009. Critical enhancements of MRI contrast and hyperthermic effects by dopant controlled magnetic nanoparticles. Angew Chem Int Ed. 2009;48(7):1234–8.
20.Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, et al. Theranostic magnetic nanostructures (MNS) for cancer. Cancer Treat Res. 2015;166:51–83.
CAS PubMed PubMed Central Article Google Scholar
21.Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility. Pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818–78.
CAS PubMed Article PubMed Central Google Scholar
22.Schultz-Sikma EA, Joshi HM, Ma Q, MacRenaris KW, Eckermann AL, Dravid VP, et al. Probing the chemical stability of mixed ferrites: implications for magnetic resonance contrast agent design. Chem Mater. 2011;23(10):2657–64.
CAS PubMed PubMed Central Article Google Scholar
23.Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41(11):4306–34.
CAS PubMed Article PubMed Central Google Scholar
24.Xu CJ, Wang BD, Sun SH. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc. 2009;131(12):4216–7.
CAS PubMed PubMed Central Article Google Scholar
25.Kwon KW, Shim M. 2005. Gamma-Fe2O3/II–VI sulfide nanocrystal heterojunctions. J Am Chem Soc. 2005;127(29):10269–75.
CAS PubMed Article PubMed Central Google Scholar
26.Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 2009;7(4):861–7.
27.Swain AK, Pradhan L, Bahadur D. Polymer stabilized Fe3O4-graphene as an amphiphilic drug carrier for thermo-chemotherapy of cancer. ACS Appl Mater Interfaces. 2015;7:8013–22.
CAS PubMed Article PubMed Central Google Scholar
28.Lacava LM, Lacava ZGM, Azevedo RB, Chaves SB, Garcia VAP, Silva O, et al. Use of magnetic resonance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice. J Magn Magn Mater. 2002;252:367–9.
29.Lacava LM, Garcia VAP, Kuckelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater. 2004;272:2434–5.
30.Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomat. 2005;26:2685–94.
31.Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, et al. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mat Res Part B: Appl Biomat. 2007;81(1):12–22.
32.Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.
CAS PubMed Article PubMed Central Google Scholar
33.Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review J Drug Target. 1998;6(3):167–74.
CAS PubMed Article PubMed Central Google Scholar
34.Mohapatra J, Mitra A, Tyagi H, Bahadur D, Aslam M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale. 2015;7:9174–84.
CAS PubMed Article PubMed Central Google Scholar
35.•Saikia K, Bhattacharya K, Sen D, Kaushik SD, Biswas J, Lodha S, et al. Solvent evaporation driven entrapment of magnetic nanoparticles in mesoporous frame for designing a highly efficient MRI contrast probe. Appl Surf Sci. 2019;464:567–76. This article explains an important process to improve the efficiency of magnetic nanoparticles as an MRI contrast agent.
36.Wáng YXJ, Idée J-M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg. 2017;7(1):88–122.
PubMed PubMed Central Article Google Scholar
37.Wang YXJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.
PubMed PubMed Central Google Scholar
38.Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.
PubMed PubMed Central Article Google Scholar
39.Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007;7:1929–34.
CAS PubMed Article PubMed Central Google Scholar
40.Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnology. 2008;6(2).
41.Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperth. 2005;21:637–47.
42.Ito A, Fujioka M, Yoshida T, Wakamatsu K, Ito S, Yamashita T, et al. 4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Sci. 2007;98:424–30.
Comments (0)