Abbott NWR, Maddock L (eds) (1995) Cephalopod neurobiology. Oxford University Press, Oxford
Abbott NJ, Bundgaard M, Cserr HF (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia officinalis. J Physiol Lond 316:P52–P53
Abbott N, Bundgaard M, Cserr HF (1985) Brain vascular volume, electrolytes and blood-brain interface in the cuttlefish Sepia officinalis (Cephalopoda). J Physiol 368:197–212
CAS PubMed PubMed Central Google Scholar
Adelman WJ, Gilbert DL (1990) Electrophysiology and biophysiscs of the squid giant axon. In: Gilbert D, Adelman H, Arnold J (eds) Squid as experimental animals. Plenum Press, New York, pp 93–132
Akert K, Sandri C (1976) The fine structure of the perineural endothelium. Cell Tiss Res 165:281–295
Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E et al (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224
CAS PubMed PubMed Central Google Scholar
Binnington KC, Lane NJ (1980) Perineurial and glial cells in the tick Boophilus microplus (Acarina: Ixodidae); freeze-fracture and tracer studies. J Neurocytol 9:343–362
CAS PubMed PubMed Central Google Scholar
Boycott B (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc R Soc Lond B Biol Sci 153:503–534
Budelmann BU, Young JZ (1984) The statocyst-oculomotor system of Octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond B 306:1127. https://doi.org/10.1098/rstb.1984.0084
Budelmann BU, Young JZ (1997) Brain pathways of the branchial nerves of Sepia and Loligo. Philos Trans R Soc Lond B(315):345–352
Budelrnann B (1995) The cephalopod nervous system: What evolution has made of the molluscan design. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhauser Verlag, Basel, pp 115–138
Buresi A, Andouche A, Navet S, Bassaglia Y, Bonnaud-Ponticelli L, Baratte S (2016) Nervous system development in cephalopods: how egg yolkrichness modifies the topology of the mediolateral patterning system. Dev Biol 415:143–156
Büssow H (1980) The astrocytes in the retina and optic nerve head of mammals: a special glia for the ganglion. Cell Tiss Res 206(3):367–378
Butler A (2008) Evolution of the thalamus: a morphological and functional review. Thalamus Relat Syst 4:35–58
Crone C (1986) The blood-brain barrier as a tight epithelium: where is information lacking? Ann N Y Acad Sci 481:174–185
David GB, Brown AW, Mallion KB (1961) On the Identity of the ‘Neurofibrils’, ‘Nissl complex’, ‘Golgi Apparatus’, and ‘Trophospongium’ in the Neurones of Vertebrates. Q J Microscop Sci 102(4):481–489
de Lange RPJ, van Minnen J (1998) Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 109(2):166–174
Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comput Neurol 398(1):1–12
Di Cristo C, De Lisa E, Di Cosmo A (2009) GnRH in the brain and ovary of Sepia officinalis. Peptides 30(3):531–537
Doreen E Ashhurst, Chapman JA (1962) An electron-microscope study of the cytoplasmic inclusions in the neurones of Locusta migratoria. Q J Microscop Sci 103(2):147–153
Dunlop C, King N (2008) Cephalopods: Octopuses and cuttlefish for the home aquarium. Publications, Neptune City
Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18
Fernández-Rueda P, García-Flórez L (2007) Octopus vulgaris (Mollusca:Cephalopoda) fishery management assessment in Asturias (North-West Spain). Fish Res 83:351–354
Froesch D (1974) The subpedunculate lobe of the octopus brain: Evidence for dual function. Brain Res 75(2):277–285
Gotow T, Hashimoto PH (1984) Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system. J Neurocytol 13:727–742
Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Philos Trans R Soc Lond B(258):379–394
Gray EG, Young JZ (1964) Electron microscopy of synaptic structure of Octopus brain. J Cell Biol 21:87–103
CAS PubMed PubMed Central Google Scholar
Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238
Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:510–514
Hochner B, Shomrat T (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892
Hochner B, Shomrat T (2014) The neurophysiological basis of learning and memory in an advanced invertebrate—the octopus. In: Darmaillacq A-S, Dickel L, Mather JA (eds) Cephalopods cognition. Cambridge University Press, Cambridge
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM et al (2013) Evolution of bilaterian central nervous systems: a single origin? Evo Dev 4:27
Jereb P, Roper CE (eds) (2005) Cephalopods of the World, an Annotated and illustrated Catalogue of Cephalopod Species Known to Date. Publicatios, Neptune City, p 1
Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ (2012) Principles of neural science, 5th edn. McGraw-Hill, New York
Keay J, Bridgham JT, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147(8):3861–3869
CAS PubMed PubMed Central Google Scholar
Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553
Lane NJ, Swales LS (1976) Interrelationships between Golgi, Gerl and synaptic vesicles in the nerve cells of insect and gastropod ganglia. J Cell Set 22:435–453
Lane NJ, Treherne JE (1972) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tiss Cell 4:427–436
Lane NJ, Harrison JB, Bowerman RF (1981) A vertebrate-like blood-brain barrier, with intraganglionic blood channels and occluding junctions in the scorpion. Tiss Cell 13:557–576
Moussa TA, Banhawy M (1958) Studies on the Nissl substance, neurofibrillae and intracellular trabeculae of insect neurones. J R Microsc Soc 78:114–119
CAS PubMed PubMed Central Google Scholar
Nakajima Y, Pappas GD, Bennett MVL (1965) The fine structure of the supramedullary neurons of the puffer fish, with special reference to endocellular and pericellular capillaries. Am J Anat 116:471–492
Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561
Nicholls JG, Kuffler SW (1964) Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J Neurophysiol 27:645–671
Nixon M, Young JZ (2003) The Brains and Lives of Cephalopods. Oxford University Press, Oxford
Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417
Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562
CAS PubMed PubMed Central Google Scholar
Plan, T. (1987). Functional neuroanatomy of sensory-motor lobes of the brain of Octopus vulgaris. Ph.D. thesis, University of Regensburg
Rechenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York
Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217
CAS PubMed PubMed Central Google Scholar
Richard L, Saint M, Stanley DC, Che C (1984) The glial cells of insects. Insect Ultrastruct 50:435–475
Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comput Neurol 523:1297–1317
Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342
Simons M, Trajkovic K (2006) Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119:4381–4389
Stephens PR, Young JZ (1969) The glio-vascular system of, cephalopods. Philos Trans R Soc Lon B(255):1–11
Sun B, Tsai S (2011) Agonadotropin-releasing hormone-like molecule modulates the activity of diverse central neurons in a gastropod mollusk, Aplysia californica. Front Endocrinol 2(36):1–8
Verkhratsky A, Parpura V, Rodriguez JJ (2010) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net. Brain Res Rev 66(1–2):133–151
Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329
Wentzell MM, Martínez-Rubio C, Miller MW, Murphy AD (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–394
Williamson R, Chrachri A (2004) Cephalopod neural networks. Neurosignals 13:87–98
Comments (0)