Ampatzis K, Song J, Ausborn J, El Manira A (2014) Separate microcircuit modules of distinct V2a interneurons and motoneurons control the speed of locomotion. Neuron 83:934–943
Arreola J, Calvo J, Garcia MC, Sanchez JA (1987) Modulation of calcium channels of twitch skeletal muscle fibers of the frog by adrenaline and cyclic adenosine monophosphate. J Physiol 393:307–330
CAS PubMed PubMed Central Google Scholar
Arshavsky YI, Beloozerova IN, Orlovsky GN, Panchin YV, Pavlova GA (1985a) Control of locomotion in marine molluskClione limacina. I. Efferent activity during actual and fictitious swimming. Expl Brain Res 58:255–262
Arshavsky YI, Beloozerova IN, Orlovsky GN, Panchin YV, Pavlova GA (1985b) Control of locomotion in marine molluskClione limacina. II. Rhythmic neurons of pedal ganglia. Expl Brain Res 58:263–272
Arshavsky YI, Beloozerova IN, Orlovsky GN, Panchin YV, Pavlova GA (1985c) Control of locomotion in marine molluskClione limacina. III. On the origin of locomotory rhythm. Expl Brain Res 58:273–284
Arshavsky YI, Beloozerova IN, Orlovsky GN, Panchin YV, Pavlova GA (1985d) Control of locomotion in marine molluskClione limacina. IV. Role of type 12 interneurons. Expl Brain Res 58:285–293
Arshavsky YI, Orlovsky GN, Panchin YV, Pavlova GA (1989) Control of locomotion in marine molluskClione limacina. VII. Reexamination of type 12 interneurons. Expl Brain Res 78:398–406
Ausborn J, Mahmood R, El Manira A (2012) Decoding the rules of recruitment of excitatory interneurons in the adult zebrafish locomotor network. Proc Natl Acad Sci USA 109:E3631–E3639
Bjornfors ER, Picton LD, Song J, El Manira A (2019) Diversity of neurons and circuits controlling the speed of coordination of locomotion. Curr Opin Physiol 8:170–176
Cairns SP, Borrani F (2015) β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. J Physiol 593:4713–4727
CAS PubMed PubMed Central Google Scholar
Dougherty KJ, Kiehn O (2010) Firing and cellular properties of V2a interneurons in the rodent spinal cord. J Neurosci 30:24–37
CAS PubMed PubMed Central Google Scholar
Dzoljic E, DeVries R, Dzoljic MR (1997) New and potent inhibitors of nitric oxide synthase reduce motor activity in mice. Behav Brain Res 87:209–212
Eklof-Ljunggren E, Haupt S, Ausborn J, Dehnisch I, Uhlen P, Higashijima S, El Manira A (2012) Origin of excitation underlying locomotion in the spinal circuit of zebrafish. Proc Natl Acad Sci USA 109:5511–5516
Emrick MA, Sadilek M, Konoki K, Catterall WA (2010) Beta-adrenergic-regulated phosphorylation of skeletal muscle Ca(V)1.1 channel in the fight-or-flight response. Proc Natl Acad Sci USA 43:18712–18717
Gabriel JP, Mahmood R, Kyriakatos A, Soll I, Hauptmann G, Calabrese RL, El Manira A (2009) Serotonergic modulation of locomotion in zebrafish: endogenous release and synaptic mechanisms. J Neurosci 29:10387–10395
CAS PubMed PubMed Central Google Scholar
Gabriel JP, Ausborn J, Ampatzis K, Mahmood R, Eklof-Ljunggren E, El Manira A (2011) Principles governing recruitment of motoneurons during swimming in zebrafish. Nat Neurosci 14:93–99
Huang Z, Satterlie RA (1990) Neuronal mechanisms underlying behavioral switching in a pteropod mollusk. J Comput Physiol A 166:875–887
Katz PS, Fickbohm DJ, Lynn-Bullock CP (2001) Evidence that the central pattern generator for swimming in Tritonia arose from a non-rhythmic neuromodulatory arousal system: implications for the evolution of specialized behavior. Am Zool 41:962–975
Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372:546–548
McLean DL, Masino MA, Koh IY, Lindquist WB, Fetcho JR (2008) Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat Neurosci 11:1419–1429
CAS PubMed PubMed Central Google Scholar
McLean DL, Fetcho J (2009) Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. J Neurosci 29:13566–13577
CAS PubMed PubMed Central Google Scholar
McPherson DR, Blankenship JE (1991) Neural control of swimming in Aplysia brasiliana. III. Serotonergic modulatory neurons. J Neurophysiol 66:1366–1379
McPherson DR, Blankenship JE (1992) Neuronal modulation of foot and body-wall contractions in Aplysia californica. J Neurophysiol 67:23–28
Newcomb JM, Katz PS (2009) Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours. Proc R Soc London B 276:99–108
Parsons DW, Pinsker HM (1988) Swimming in Aplysia brasiliana: identification of parapodial opener-phase and closer-phase neurons. J Neurophysiol 59:717–739
Parsons DW, Pinsker HM (1989) Swimming in Aplysia brasiliana: behavioral and cellular effects of serotonin. J Neurophysiol 62:1163–1176
Pirtle TJ, Satterlie RA (2006) The contribution of the pleural type 12 interneuron to swim acceleration in Clione limacina. Invert Neurosci 6:161–168
Satterlie RA (1993) Neuromuscular organization in the swimming system of the pteropod mollusc Clione limacina. J Exp Biol 181:119–140
Satterlie RA (1995) Serotonergic modulation of swimming speed in the pteropod mollusc Clione limacina. II. Peripheral modulatory neurons. J Exp Biol 19:905–916
Satterlie RA, Norekian TP (1995) Serotonergic modulation of swimming speed in the pteropod mollusc Clione limacina. III. Cerebral neurons. J Exp Biol 198:917–930
Satterlie RA, Norekian TP (1997) Modulation of swimming speed in the pteropod mollusc, Clione limacina: role of a compartmental serotonergic system. Invert Neurosci 2:157–165
Satterlie RA, Norekian TP (2001) Mechanisms of locomotory speed change: the pteropod solution. Am Zool 41:1001–1008
Satterlie RA, Spencer AN (1985) Swimming in the pteropod mollusc, Clione limacina. II. Physiology. J Exp Biol 116:205–222
Satterlie RA, LaBarbera M, Spencer AN (1985) Swimming in the pteropod mollusc, Clione limacina. I. Behaviour and Morphology. J Exp Biol 116:189–204
Satterlie RA, Norekian TP, Jordan S, Kazilek CJ (1995) Serotonergic modulation of swimming speed in the pteropod mollusc Clione limacina. I. Serotonin immunoreactivity in the central nervous system and wings. J Exp Biol 198:895–904
Satterlie RA, Norekian TP, Pirtle TJ (2000) Serotonin-induced spike narrowing in a locomotor pattern generator permits increases in cycle frequency during accelerations. J Neurophysiol 83:2163–2170
Song J, Pallucchi I, Ausborn J, Ampatzis K, Bertuzzi M, Fontanel P, Picton LD, El Manira A (2020) Multiple rhythm-generating circuits act in tandem with pacemaker properties to control the start and speed of locomotion. Neuron 105:1048–1061
Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237
Szymik BG, Satterlie RA (2011) Changes in the wingstroke kinematics associated with a change in swimming in a pteropod mollusk, Clione limacina. J Exp Biol 214:3935–3947
Szymik BG, Satterlie RA (2017) Circulation of hemocoelic fluid during slow and fast swimming in the pteropod mollusc Clione limacina. Invert Biol 136:290–300
Wagner N (1885) Die Wirbellosen des Weissen Meeres: Zoologische Forschungen an der Kuste des Solowetzkischen Meerbusens in den Sommermonaten der Jahre 1877, 1878, 1879 und 1882. Verlag von Wilhelm Engelmann, Leipzig
Zhong G, Droho S, Crone SA, Dietz S, Kwan AC, Webb WW, Sharma K, Harris-Warrick RM (2010) Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J Neurosci 30:170–182
CAS PubMed PubMed Central Google Scholar
Zhong G, Sharma K, Harris-Warwick RM (2011) Frequency-dependent recruitment of V2a interneurons during fictive locomotion in mouse spinal cord. Nat Commun 2:274
Comments (0)