Amir, O., Amir, R. E., Paz, H., Mor, R., Sagiv, M., Lewis, B. S. (2008). Aldosterone synthase gene polymorphism as a determinant of atrial fibrillation in patients with heart failure. American Journal of Cardiology, 1\02(3), 326–329.
https://doi.org/10.1016/j.amjcard.2008.03.063 Google Scholar
Ayadi Kabadou, I., Soualmia, H., Jemaa, R., Feki, M., Kallel, A., Souhail, O., Haj Taieb, S., Sanhaji, H., Kaabachi, N. (2013). G protein β3 subunit gene C825T and angiotensin converting enzyme gene insertion/deletion polymorphisms in hypertensive Tunisian population. Clinical Laboratory, 59(1–2), 85–92.
https://doi.org/10.7754/clin.lab.2013.111105 Google Scholar
Bahramali, E., Rajabi, M., Jamshidi, J., Mousavi, S. M., Zarghami, M., Manafi, A., Firouzabadi, N. (2016). Association of ACE gene D polymorphism with left ventricular hypertrophy in patients with diastolic heart failure: A case–control study. British Medical Journal Open, 6(2), e010282.
https://doi.org/10.1136/bmjopen-2015-010282 Google Scholar
Bedi, M., McNamara, D., London, B., Schwartzman, D. (2006). Genetic susceptibility to atrial fibrillation in patients with congestive heart failure. Heart Rhythm, 3(7), 808–812.
https://doi.org/10.1016/j.hrthm.2006.03.002 Google Scholar
Benjamin, E. J., Wolf, P. A, D’Agostino, R. B., Silbershatz, H., Kannel, W. B., Levy, D. (1998). Impact of atrial fibrillation on the risk of death: The Framingham heart study. Circulation, 98(10), 946–952.
https://doi.org/10.1161/01.cir.98.10.946 Google Scholar
Bress, A., Han, J., Patel, S. R., Desai, A. A., Mansour, I., Groo, V., Progar, K., Shah, E., Stamos, T. D., Wing, C., Garcia, J. G., Kittles, R., Cavallari, L. H. (2013). Association of aldosterone synthase polymorphism (CYP11B2-344T/C) and genetic ancestry with atrial fibrillation and serum aldosterone in African Americans with heart failure. PLoS One, 8(7), e71268.
https://doi.org/10.1371/journal.pone.0071268 Google Scholar
Camm, A. J., Kirchhof, P., Lip, G. Y. H., Schotten, U., Savelieva, I., Ernst, S., Van Gelder, I. C., Al-Attar, N., Hindricks, G., Prendergast, B., Heidbuchel, H., Alfieri, O., Angelini, A., Atar, D., Colonna, P, De Caterina, R., De Sutter, J., Goette, A., Gorenek, B.…Rutten, F. H. (2010). Guidelines for the management of atrial fibrillation: The task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). European Heart Journal, 31(19), 2369–2429.
https://doi.org/10.1093/eurheartj/ehq278 Google Scholar
Delcayre, C., Silvestre, J. S. (1999). Aldosterone and the heart: Towards a physiological function? Cardiovascular Research, 43(1), 7–12.
https://doi.org/10.1016/s0008-6363(99)00088-7 Google Scholar
Disertori, M., Franzosi, M. G., Barlera, S., Cosmi, F., Quintarelli, S., Favero, C., Cappellini, G., Fabbri, G., Maggioni, A. P., Staszewsky, L., Moroni, L. A., Latini, R. (2013). Thromboembolic event rate in paroxysmal and persistent atrial fibrillation: Data from the GISSI-AF trial. BMC Cardiovascular Disorders, 13(1), 1–9.
https://doi.org/10.1186/1471-2261-13-28 Google Scholar
Ehrlich, J. R., Hohnloser, S. H., Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27(5), 512–518.
https://doi.org/10.1093/eurheartj/ehi668 Google Scholar
Friedwald, W. T., Levy, R. I., Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502. PMID; 4337382.
Google Scholar |
Crossref |
Medline |
ISI
Fu, X., Ma, X., Zhong, L., Song, Z (2015). Relationship between CYP11B2-344T>C polymorphsim and atrial fibrillation: A meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 16(1), 185–188.
https://doi.org/10.1177/1470320314553984 Google Scholar
Funck, R. C., Wilke, A., Rupp, H., Brilla, C. G. (1997). Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Advances in Experimental Medicine and Biology, 432, 35–44.
https://doi.org/10.1007/978-1-4615-5385-4_4 Google Scholar
Furberg, C. D., Psaty, B. M., Manolio, T. A., Gardin, J. M., Smith, V. E., Rautaharju, P. M. (1994). Prevalence of atrial fibrillation in elderly subjects (the cardiovascular health study). American Journal of Cardiology, 74(3), 236–241.
https://doi.org/10.1016/0002-9149(94)90363-8 Google Scholar
Gensini, F., Padeletti, L., Fatini, C., Sticchi, E., Gensini, G. F., Michelucci, A. (2003). Angiotensin-converting enzyme and endothelial nitric oxide synthase polymorphisms in patients with atrial fibrillation. Pacing and Clinical Electrophysiology, 26(1P2), 295–298.
https://doi.org/10.1046/j.1460-9592.2003.00036.x Google Scholar
Goette, A., Staack, T., Rocken, C., Arndt, M., Geller, J. C., Huth, C., Ansorge, S., Klein, H. U., Lendeckel, U. (2000). Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. Journal of the American College of Cardiology, 35(6), 1669–1677.
https://doi.org/10.1016/s0735-1097(00)00611-2 Google Scholar
Hou, S., Lu, Y., Huang, D., Luo, X., Wang, Z., Zhang, J., Xu, W. (2017). Correlation of atrial fibrillation with renin-angiotensin-aldosterone system gene polymorphism. Acta Medica Mediterranea, 33, 275–283.
https://doi.org/10.19193/0393-6384_2017_2_041 Google Scholar
Huang, M., Gai, X., Yang, X., Hou, J., Lan, X., Zheng, W., Chen, F., He, J. (2009). Functional polymorphisms in ACE and CYP11B2 genes and atrial fibrillation in patients with hypertensive heart disease. Clinical Chemistry and Laboratory Medicine, 47(1), 32–37.
https://doi.org/10.1515/CCLM.2009.023 Google Scholar
Iravanian, S., Dudley, S. C. (2008). The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm, 5(6), S12–S17.
https://doi.org/10.1016/j.hrthm.2008.02.025 Google Scholar
Leifheit-Nestler, M., Kirchhoff, F., Nespor, J., Richter, B., Soetje, B., Klintschar, M., Heineke, J., Haffner, D. (2018). Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrology Dialysis Transplantation, 33, 1722–1734.
https://doi.org/10.1093/ndt/gfy006 Google Scholar
Li, Y. Y., Zhou, C. W., Xu, J., Qian, Y., Wang, B. (2012). CYP11B2 T-344C gene polymorphism and atrial fibrillation: A meta-analysis of 2,758 subjects. PLoS One, 7(11), e50910.
https://doi.org/10.1371/journal.pone.0050910 Google Scholar
Liu, T., Korantzopoulos, P., Xu, G., Shehata, M., Li, D., Wang, X., Li, G. (2011). Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and atrial fibrillation: A meta-analysis. Europace, 13(3), 346–354.
https://doi.org/10.1093/europace/euq407 Google Scholar
Lu, W. H., Bayike, M., Liu, J. W., Wang, S., Xie, X., Yang, Y. C., Liu, F., Li, N., Liu, Z. Q., Muhuyati, H. P. Y. (2015). Association between aldosterone synthase (CYP11B2) -344C/T polymorphism and atrial fibrillation among Han and Kazak residents of the Xinjiang region. International Journal of Clinical Experimental Medicine, 8(4), 5513–5519. PMID: 26131131.
Google Scholar |
Medline
Luckett, L. R., Gallucci, R. M. (2007). Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. British Journal of Dermatology, 156(6), 1163–1171.
https://doi.org/10.1111/j.1365-2133.2007.07867.x Google Scholar
Ma, R., Li, X., Su, G., Hong, Y., Wu, X., Wang, J., Zhao, Z., Song, Y., Ma, S. (2015). Angiotensin-converting enzyme insertion/deletion gene polymorphisms associated with risk of atrial fibrillation: A metaanalysis of 23 case-control studies. Journal of the Renin-Angiotensin-Aldosterone System, 16(4), 793–800.
https://doi.org/10.1177/1470320315587179 Google Scholar
Mayyas, F., Alzoubi, K. H., Van Wagoner, D. R. (2013). Impact of aldosterone antagonists on the substrate for atrial fibrillation: Aldosterone promotes oxidative stress and atrial structural/electrical remodeling. International Journal of Cardiology, 168(6), 5135–5142.
https://doi.org/10.1016/j.ijcard.2013.08.022 Google Scholar
Miller, S. A., Dykes, D. D., Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215.
https://doi.org/10.1093/nar/16.3.1215 Google Scholar
Niu, S., Zhang, B., Zhang, K., Zhu, P., Li, J., Sun, Y., He, N., Zhang, M., Gao, Z., Li, X., Simayi, A., Ge, J., Cong, M., Zhou, W., Qiu, C. (2016). Synergistic effects of gene polymorphisms of the renin-angiotensin-aldosterone system on essential hypertension in Kazakhs in Xinjiang. Clinical and Experimental Hypertension, 38(1), 63–70.
https://doi.org/10.3109/10641963.2015.1060985 Google Scholar
Novo, G., Guttilla, D., Fazio, G., Cooper, D., Novo, S. (2008). The role of the renin-angiotensin system in atrial fibrillation and the therapeutic effects of ACE-Is and ARBS. Britich Journal of Clinical Pharmacology, 66(3), 345–351.
https://doi.org/10.1111/j.1365-2125.2008.03234.x Google Scholar
Ogimoto, A., Hamada, M., Nakura, J., Miki, T., Hiwada, K. (2002). Relation between angiotensin-converting enzyme II genotype and atrial fibrillation in Japanese patients with hypertrophic cardiomyopathy. Journal of Human Genetics, 47(4), 184–189.
https://doi.org/10.1007/s100380200021 Google Scholar
Oki, K., Yamane, K., Satoh, K., Nakanishi, S., Yamamoto, H., Kohno, N. (2010). Aldosterone synthase (CYP11B2) C-344T polymorphism affects the association of age-related changes of the serum C-reactive protein. Hypertension Research, 33(4), 326–330.
https://doi.org/10.1038/hr.2009.233 Google Scholar
Ravn, L. S., Benn, M., Nordestgaard, B. G., Sethi, A. A., Agerholm-Larsen, B., Jensen, G. B., Tybjærg-Hansen, A. (2008). Angiotensinogen and ACE gene polymorphisms and risk of atrial fibrillation in the general population. Pharmacogenetics and Genomics, 18(6), 525–535.
https://doi.org/10.1097/FPC.0b013e3282fce3bd Google Scholar
Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., Soubrier, F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation, 86(4), 1343–1346.
https://doi.org/10.1172/JCI114844 Google Scholar
Russo, P., Siani, A., Venezia, A., Iacone, R., Russo, O., Barba, G., D’Elia, L., Cappuccio, F. P., Strazzullo, P. (2002). Interaction between the C(344)T polymorphism of CYP11B2 and age in the regulation of blood pressure and plasma aldosterone levels: Cross sectional and longitudinal findings of the Olivetti Prospective Heart Study. Journal of Hypertension, 20(9), 1785–1792.
https://doi.org/10.1097/00004872-200209000-00023 Google Scholar
SHEsis . (2005).
http://analysis.bio-x.cn/myAnalysis.php Google Scholar
Sinner, M. F., Lubitz, S. A., Pfeufer, A., Makino, S., Beckmann, B. M., Lunetta, K. L., Steinbeck, G., Perz, S., Rahman, R., Sonni, A., Greenberg, S. M., Furie, K. L., Wichmann, H. E., Meitinger, T., Peters, A., Benjamin, E. J., Rosand, J., Ellinor, P. T., Kääb, S. (2011). Lack of replication in polymorphisms reported to be associated with atrial fibrillation. Heart Rhythm, 8(3), 403–409.
https://doi.org/10.1016/j.hrthm.2010.11.003 Google Scholar
Steinberg, B. A., Hellkamp, A. S., Lokhnygina, Y., Patel, M. R., Breithardt, G., Hankey, G. J., Becker, R. C., Singer, D. E., Halperin, J. L., Hacke, W., Nessel, C. C., Berkowitz, S. D., Mahaffey, K. W., Fox, K. A., Califf, R. M., Piccini, J. P. (2015). Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: Results from the ROCKET- AF Trial. European Heart Journal, 36(5), 288–296.
https://doi.org/10.1093/eurheartj/ehu359 Google Scholar
Sun, X., Yang, J., Hou, X., Li, J., Shi, Y., Jing, Y. (2011). Relationship between -344T/C polymorphism in the aldosterone synthase gene and atrial fibrillation in patients with essential hypertension. Journal of the Renin-Angiotensin-Aldosterone System, 12(4), 557–563.
https://doi.org/10.1177/1470320311417654 Google Scholar
Sydorchuk, L., Dzhuryak, V., Sydorchuk, A., Levytska, S., Petrynych, V., Knut, R., Kshanovska, A., Iftoda, O., Tkachuk, O., Kyfiak, P., Popovich, A., Khomko, O., Sydorchuk, R. (2020). The cytochrome 11B2 aldosterone synthase gene rs1799998 single nucleotide polymorphism determines elevated aldosterone, higher blood pressure, and reduced glomerular filtration, especially in diabetic female patients. Endocrine Regulations, 54(3), 217–226.
https://doi.org/10.2478/enr-2020-0024 Google Scholar
Tiret, L., Rigat, B., Visvikis, S., Breda, C., Corvol, P., Cambien, F., Soubrier, F. (1992). Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. The American Journal of Human Genetics, 51(1), 197–205. PMID; 1319114.
Google Scholar |
Medline |
ISI
Topal, N. P., Ozben, B., Hancer, V. S., Tanrikulu, A. M., DizKucukkaya, R., Fak, A. S., Basaran, Y., Yesildag, O. (2011). Polymorphisms of the angiotensin-converting enzyme and angiotensinogen gene in patients with atrial fibrillation. Journal of the Renin-Angiotensin-Aldosterone System, 12(4), 549–556.
https://doi.org/10.1177/1470320311399605 Google Scholar
Tsai, C. T., Lai, L. P., Lin, J. L., Chiang, F. T., Hwang, J. J., Ritchie, M. D., Moore, J. H., Hsu, K. L, Tseng, C. D., Liau, C. S., Tseng, Y. Z. (2004). Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation, 109(13), 1640–1646.
https://doi.org/10.1161/01.CIR.0000124487.36586.26 Google Scholar
Tziakas, D. N., Chalikias, G. K., Stakos, D. A., Papazoglou, D., Papanas, N., Papatheodorou, K., Chatzikyriakou, S. V., Kotsiou, S., Maltezos, E., Boudoulas, H. (2007). Effect of angiotensin-converting enzyme insertion/deletion genotype on collagen type I synthesis and degradation in patients with atrial fibrillation and arterial hypertension. Expert Opinion on Pharmacotherapy, 8(14), 2225–2234.
https://doi.org/10.1517/14656566.8.14.2225 Google Scholar
Ueberham, L., Andreas Bollmann, A., Shoemaker, M. B., Arya, A., Adams, V., Hindricks, G., Husser, D. (2013). Genetic ACE I/D polymorphism and recurrence of atrial fibrillation after catheter ablation. Circulation Arrhythmia and Electrophysiology, 6(4), 732–737.
https://doi.org/10.1161/CIRCEP.113.000253 Google Scholar
Vermes, E., Tardif, J. C., Bourassa, M. G., Racine, N., Levesque, S., White, M., Guerra, P. G., Ducharme, A. (2003). Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: Insight from the studies of left ventricular dysfunction (SOLVD) trials. Circulation, 107(23), 2926–2931.
https://doi.org/10.1161/01.CIR.0000072793.81076.D4 Google Scholar
Wang, X., Li, Y., Li, Q. A. (2019). Comprehensive meta-analysis on relationship between CYP11B2 rs1799998 polymorphism and atrial fibrillation. Journal of Electrocardiology, 52, 101–105.
https://doi.org/10.1016/j.jelectrocard.2018.11.009 Google Scholar
Watanabe, H., Kaiser, D. W., Makino, S., MacRae, C. A., Ellinor, P. T., Wasserman, B. S., Kannankeril, P. J., Donahue, B. S., Roden, D. M., Darbar, D. (2009). ACE I/D polymorphism associated with abnormal atrial and atrioventricular conduction in lone atrial fibrillation and structural heart disease: Implications for electrical remodeling. Heart Rhythm, 6(9), 1327–1332.
https://doi.org/10.1016/j.hrthm.2009.05.014 Google Scholar
Weber, K. T., Brilla, C. G., Campbell, S. E., Guarda, E., Zhou, G., Sriram, K. (1993). Myocardial fibrosis: Role of angiotensin II and aldosterone. Basic Research in Cardiology, 88(1), 107–124.
https://doi.org/10.1007/978-3-642-72497-8_8 Google Scholar
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E, Collins, K. J., Denninson Himmelfarb, C., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Munter, P., Ovbiagele, B., Smith, S. C, Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A…Wright, J. T. (2018). 2017 ACC/AHA/AAPA/ABC/ ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Journal of the American College of Cardiology, 71(19), e127–e248.
https://doi.org/10.1016/j.jacc.2017.11.006 Google Scholar
Wolf, P. A., Abbott, R. D., Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: The framingham study. Stroke, 22(8), 983–988.
https://doi.org/10.1161/01.str.22.8.983 Google Scholar
World Health Organization . (2006). Guidelines for the prevention, management and care of diabetes mellitus.
https://apps.who.int/iris/handle/10665/119799 Google Scholar
Yamashita, T., Hayami, N., Ajiki, K., Oikawa, N., Sezaki, K., Inoue, M., Omata, M., Murakawa, Y. (1997). Is ACE gene polymorphism associated with lone atrial fibrillation? Japanese Heart Journal, 38(5), 637–641.
https://doi.org/10.1536/ihj.38.637 Google Scholar
Yongjun, Q., Huanzhang, S., Wenxia, Z., Hong, T., Xijun, X. (2015). From changes in local RAAS to structural remodeling of the left atrium: A beautiful cycle in atrial fibrillation. Herz, 40(3), 514–520.
https://doi.org/10.1007/s00059-013-4032-7 Google Scholar
Zhang, X. L., Wu, L. Q., Liu, X., Yang, Y. Q., Tan, H. W., Wang, X. H., Zhou, L., Jiang, W. F., Li, Z. (2012). Association of angiotensin converting enzyme gene I/D and CYP11B2 gene 344T/C polymorphisms with lone atrial fibrillation and its recurrence after catheter ablation. Experimental and Therapeutic Medicine, 4(4), 741–747.
https://doi.org/10.3892/etm.2012.650 Google Scholar
Zhao, J., Li, J., Li, W., Li, Y., Shan, H., Gong, Y., Ya
Comments (0)