Contribution of the ACE (rs1799752) and CYP11B2 (rs1799998) Gene Polymorphisms to Atrial Fibrillation in the Tunisian Population

Amir, O., Amir, R. E., Paz, H., Mor, R., Sagiv, M., Lewis, B. S. (2008). Aldosterone synthase gene polymorphism as a determinant of atrial fibrillation in patients with heart failure. American Journal of Cardiology, 1\02(3), 326–329. https://doi.org/10.1016/j.amjcard.2008.03.063
Google Scholar Ayadi Kabadou, I., Soualmia, H., Jemaa, R., Feki, M., Kallel, A., Souhail, O., Haj Taieb, S., Sanhaji, H., Kaabachi, N. (2013). G protein β3 subunit gene C825T and angiotensin converting enzyme gene insertion/deletion polymorphisms in hypertensive Tunisian population. Clinical Laboratory, 59(1–2), 85–92. https://doi.org/10.7754/clin.lab.2013.111105
Google Scholar Bahramali, E., Rajabi, M., Jamshidi, J., Mousavi, S. M., Zarghami, M., Manafi, A., Firouzabadi, N. (2016). Association of ACE gene D polymorphism with left ventricular hypertrophy in patients with diastolic heart failure: A case–control study. British Medical Journal Open, 6(2), e010282. https://doi.org/10.1136/bmjopen-2015-010282
Google Scholar Bedi, M., McNamara, D., London, B., Schwartzman, D. (2006). Genetic susceptibility to atrial fibrillation in patients with congestive heart failure. Heart Rhythm, 3(7), 808–812. https://doi.org/10.1016/j.hrthm.2006.03.002
Google Scholar Benjamin, E. J., Wolf, P. A, D’Agostino, R. B., Silbershatz, H., Kannel, W. B., Levy, D. (1998). Impact of atrial fibrillation on the risk of death: The Framingham heart study. Circulation, 98(10), 946–952. https://doi.org/10.1161/01.cir.98.10.946
Google Scholar Bress, A., Han, J., Patel, S. R., Desai, A. A., Mansour, I., Groo, V., Progar, K., Shah, E., Stamos, T. D., Wing, C., Garcia, J. G., Kittles, R., Cavallari, L. H. (2013). Association of aldosterone synthase polymorphism (CYP11B2-344T/C) and genetic ancestry with atrial fibrillation and serum aldosterone in African Americans with heart failure. PLoS One, 8(7), e71268. https://doi.org/10.1371/journal.pone.0071268
Google Scholar Camm, A. J., Kirchhof, P., Lip, G. Y. H., Schotten, U., Savelieva, I., Ernst, S., Van Gelder, I. C., Al-Attar, N., Hindricks, G., Prendergast, B., Heidbuchel, H., Alfieri, O., Angelini, A., Atar, D., Colonna, P, De Caterina, R., De Sutter, J., Goette, A., Gorenek, B.…Rutten, F. H. (2010). Guidelines for the management of atrial fibrillation: The task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). European Heart Journal, 31(19), 2369–2429. https://doi.org/10.1093/eurheartj/ehq278
Google Scholar Delcayre, C., Silvestre, J. S. (1999). Aldosterone and the heart: Towards a physiological function? Cardiovascular Research, 43(1), 7–12. https://doi.org/10.1016/s0008-6363(99)00088-7
Google Scholar Disertori, M., Franzosi, M. G., Barlera, S., Cosmi, F., Quintarelli, S., Favero, C., Cappellini, G., Fabbri, G., Maggioni, A. P., Staszewsky, L., Moroni, L. A., Latini, R. (2013). Thromboembolic event rate in paroxysmal and persistent atrial fibrillation: Data from the GISSI-AF trial. BMC Cardiovascular Disorders, 13(1), 1–9. https://doi.org/10.1186/1471-2261-13-28
Google Scholar Ehrlich, J. R., Hohnloser, S. H., Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27(5), 512–518. https://doi.org/10.1093/eurheartj/ehi668
Google Scholar Friedwald, W. T., Levy, R. I., Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502. PMID; 4337382.
Google Scholar | Crossref | Medline | ISI Fu, X., Ma, X., Zhong, L., Song, Z (2015). Relationship between CYP11B2-344T>C polymorphsim and atrial fibrillation: A meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 16(1), 185–188. https://doi.org/10.1177/1470320314553984
Google Scholar Funck, R. C., Wilke, A., Rupp, H., Brilla, C. G. (1997). Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Advances in Experimental Medicine and Biology, 432, 35–44. https://doi.org/10.1007/978-1-4615-5385-4_4
Google Scholar Furberg, C. D., Psaty, B. M., Manolio, T. A., Gardin, J. M., Smith, V. E., Rautaharju, P. M. (1994). Prevalence of atrial fibrillation in elderly subjects (the cardiovascular health study). American Journal of Cardiology, 74(3), 236–241. https://doi.org/10.1016/0002-9149(94)90363-8
Google Scholar Gensini, F., Padeletti, L., Fatini, C., Sticchi, E., Gensini, G. F., Michelucci, A. (2003). Angiotensin-converting enzyme and endothelial nitric oxide synthase polymorphisms in patients with atrial fibrillation. Pacing and Clinical Electrophysiology, 26(1P2), 295–298. https://doi.org/10.1046/j.1460-9592.2003.00036.x
Google Scholar Goette, A., Staack, T., Rocken, C., Arndt, M., Geller, J. C., Huth, C., Ansorge, S., Klein, H. U., Lendeckel, U. (2000). Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. Journal of the American College of Cardiology, 35(6), 1669–1677. https://doi.org/10.1016/s0735-1097(00)00611-2
Google Scholar Hou, S., Lu, Y., Huang, D., Luo, X., Wang, Z., Zhang, J., Xu, W. (2017). Correlation of atrial fibrillation with renin-angiotensin-aldosterone system gene polymorphism. Acta Medica Mediterranea, 33, 275–283. https://doi.org/10.19193/0393-6384_2017_2_041
Google Scholar Huang, M., Gai, X., Yang, X., Hou, J., Lan, X., Zheng, W., Chen, F., He, J. (2009). Functional polymorphisms in ACE and CYP11B2 genes and atrial fibrillation in patients with hypertensive heart disease. Clinical Chemistry and Laboratory Medicine, 47(1), 32–37. https://doi.org/10.1515/CCLM.2009.023
Google Scholar Iravanian, S., Dudley, S. C. (2008). The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm, 5(6), S12–S17. https://doi.org/10.1016/j.hrthm.2008.02.025
Google Scholar Leifheit-Nestler, M., Kirchhoff, F., Nespor, J., Richter, B., Soetje, B., Klintschar, M., Heineke, J., Haffner, D. (2018). Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrology Dialysis Transplantation, 33, 1722–1734. https://doi.org/10.1093/ndt/gfy006
Google Scholar Li, Y. Y., Zhou, C. W., Xu, J., Qian, Y., Wang, B. (2012). CYP11B2 T-344C gene polymorphism and atrial fibrillation: A meta-analysis of 2,758 subjects. PLoS One, 7(11), e50910. https://doi.org/10.1371/journal.pone.0050910
Google Scholar Liu, T., Korantzopoulos, P., Xu, G., Shehata, M., Li, D., Wang, X., Li, G. (2011). Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and atrial fibrillation: A meta-analysis. Europace, 13(3), 346–354. https://doi.org/10.1093/europace/euq407
Google Scholar Lu, W. H., Bayike, M., Liu, J. W., Wang, S., Xie, X., Yang, Y. C., Liu, F., Li, N., Liu, Z. Q., Muhuyati, H. P. Y. (2015). Association between aldosterone synthase (CYP11B2) -344C/T polymorphism and atrial fibrillation among Han and Kazak residents of the Xinjiang region. International Journal of Clinical Experimental Medicine, 8(4), 5513–5519. PMID: 26131131.
Google Scholar | Medline Luckett, L. R., Gallucci, R. M. (2007). Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. British Journal of Dermatology, 156(6), 1163–1171. https://doi.org/10.1111/j.1365-2133.2007.07867.x
Google Scholar Ma, R., Li, X., Su, G., Hong, Y., Wu, X., Wang, J., Zhao, Z., Song, Y., Ma, S. (2015). Angiotensin-converting enzyme insertion/deletion gene polymorphisms associated with risk of atrial fibrillation: A metaanalysis of 23 case-control studies. Journal of the Renin-Angiotensin-Aldosterone System, 16(4), 793–800. https://doi.org/10.1177/1470320315587179
Google Scholar Mayyas, F., Alzoubi, K. H., Van Wagoner, D. R. (2013). Impact of aldosterone antagonists on the substrate for atrial fibrillation: Aldosterone promotes oxidative stress and atrial structural/electrical remodeling. International Journal of Cardiology, 168(6), 5135–5142. https://doi.org/10.1016/j.ijcard.2013.08.022
Google Scholar Miller, S. A., Dykes, D. D., Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215
Google Scholar Niu, S., Zhang, B., Zhang, K., Zhu, P., Li, J., Sun, Y., He, N., Zhang, M., Gao, Z., Li, X., Simayi, A., Ge, J., Cong, M., Zhou, W., Qiu, C. (2016). Synergistic effects of gene polymorphisms of the renin-angiotensin-aldosterone system on essential hypertension in Kazakhs in Xinjiang. Clinical and Experimental Hypertension, 38(1), 63–70. https://doi.org/10.3109/10641963.2015.1060985
Google Scholar Novo, G., Guttilla, D., Fazio, G., Cooper, D., Novo, S. (2008). The role of the renin-angiotensin system in atrial fibrillation and the therapeutic effects of ACE-Is and ARBS. Britich Journal of Clinical Pharmacology, 66(3), 345–351. https://doi.org/10.1111/j.1365-2125.2008.03234.x
Google Scholar Ogimoto, A., Hamada, M., Nakura, J., Miki, T., Hiwada, K. (2002). Relation between angiotensin-converting enzyme II genotype and atrial fibrillation in Japanese patients with hypertrophic cardiomyopathy. Journal of Human Genetics, 47(4), 184–189. https://doi.org/10.1007/s100380200021
Google Scholar Oki, K., Yamane, K., Satoh, K., Nakanishi, S., Yamamoto, H., Kohno, N. (2010). Aldosterone synthase (CYP11B2) C-344T polymorphism affects the association of age-related changes of the serum C-reactive protein. Hypertension Research, 33(4), 326–330. https://doi.org/10.1038/hr.2009.233
Google Scholar Ravn, L. S., Benn, M., Nordestgaard, B. G., Sethi, A. A., Agerholm-Larsen, B., Jensen, G. B., Tybjærg-Hansen, A. (2008). Angiotensinogen and ACE gene polymorphisms and risk of atrial fibrillation in the general population. Pharmacogenetics and Genomics, 18(6), 525–535. https://doi.org/10.1097/FPC.0b013e3282fce3bd
Google Scholar Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., Soubrier, F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation, 86(4), 1343–1346. https://doi.org/10.1172/JCI114844
Google Scholar Russo, P., Siani, A., Venezia, A., Iacone, R., Russo, O., Barba, G., D’Elia, L., Cappuccio, F. P., Strazzullo, P. (2002). Interaction between the C(344)T polymorphism of CYP11B2 and age in the regulation of blood pressure and plasma aldosterone levels: Cross sectional and longitudinal findings of the Olivetti Prospective Heart Study. Journal of Hypertension, 20(9), 1785–1792. https://doi.org/10.1097/00004872-200209000-00023
Google Scholar SHEsis . (2005). http://analysis.bio-x.cn/myAnalysis.php
Google Scholar Sinner, M. F., Lubitz, S. A., Pfeufer, A., Makino, S., Beckmann, B. M., Lunetta, K. L., Steinbeck, G., Perz, S., Rahman, R., Sonni, A., Greenberg, S. M., Furie, K. L., Wichmann, H. E., Meitinger, T., Peters, A., Benjamin, E. J., Rosand, J., Ellinor, P. T., Kääb, S. (2011). Lack of replication in polymorphisms reported to be associated with atrial fibrillation. Heart Rhythm, 8(3), 403–409. https://doi.org/10.1016/j.hrthm.2010.11.003
Google Scholar Steinberg, B. A., Hellkamp, A. S., Lokhnygina, Y., Patel, M. R., Breithardt, G., Hankey, G. J., Becker, R. C., Singer, D. E., Halperin, J. L., Hacke, W., Nessel, C. C., Berkowitz, S. D., Mahaffey, K. W., Fox, K. A., Califf, R. M., Piccini, J. P. (2015). Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: Results from the ROCKET- AF Trial. European Heart Journal, 36(5), 288–296. https://doi.org/10.1093/eurheartj/ehu359
Google Scholar Sun, X., Yang, J., Hou, X., Li, J., Shi, Y., Jing, Y. (2011). Relationship between -344T/C polymorphism in the aldosterone synthase gene and atrial fibrillation in patients with essential hypertension. Journal of the Renin-Angiotensin-Aldosterone System, 12(4), 557–563. https://doi.org/10.1177/1470320311417654
Google Scholar Sydorchuk, L., Dzhuryak, V., Sydorchuk, A., Levytska, S., Petrynych, V., Knut, R., Kshanovska, A., Iftoda, O., Tkachuk, O., Kyfiak, P., Popovich, A., Khomko, O., Sydorchuk, R. (2020). The cytochrome 11B2 aldosterone synthase gene rs1799998 single nucleotide polymorphism determines elevated aldosterone, higher blood pressure, and reduced glomerular filtration, especially in diabetic female patients. Endocrine Regulations, 54(3), 217–226. https://doi.org/10.2478/enr-2020-0024
Google Scholar Tiret, L., Rigat, B., Visvikis, S., Breda, C., Corvol, P., Cambien, F., Soubrier, F. (1992). Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. The American Journal of Human Genetics, 51(1), 197–205. PMID; 1319114.
Google Scholar | Medline | ISI Topal, N. P., Ozben, B., Hancer, V. S., Tanrikulu, A. M., DizKucukkaya, R., Fak, A. S., Basaran, Y., Yesildag, O. (2011). Polymorphisms of the angiotensin-converting enzyme and angiotensinogen gene in patients with atrial fibrillation. Journal of the Renin-Angiotensin-Aldosterone System, 12(4), 549–556. https://doi.org/10.1177/1470320311399605
Google Scholar Tsai, C. T., Lai, L. P., Lin, J. L., Chiang, F. T., Hwang, J. J., Ritchie, M. D., Moore, J. H., Hsu, K. L, Tseng, C. D., Liau, C. S., Tseng, Y. Z. (2004). Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation, 109(13), 1640–1646. https://doi.org/10.1161/01.CIR.0000124487.36586.26
Google Scholar Tziakas, D. N., Chalikias, G. K., Stakos, D. A., Papazoglou, D., Papanas, N., Papatheodorou, K., Chatzikyriakou, S. V., Kotsiou, S., Maltezos, E., Boudoulas, H. (2007). Effect of angiotensin-converting enzyme insertion/deletion genotype on collagen type I synthesis and degradation in patients with atrial fibrillation and arterial hypertension. Expert Opinion on Pharmacotherapy, 8(14), 2225–2234. https://doi.org/10.1517/14656566.8.14.2225
Google Scholar Ueberham, L., Andreas Bollmann, A., Shoemaker, M. B., Arya, A., Adams, V., Hindricks, G., Husser, D. (2013). Genetic ACE I/D polymorphism and recurrence of atrial fibrillation after catheter ablation. Circulation Arrhythmia and Electrophysiology, 6(4), 732–737. https://doi.org/10.1161/CIRCEP.113.000253
Google Scholar Vermes, E., Tardif, J. C., Bourassa, M. G., Racine, N., Levesque, S., White, M., Guerra, P. G., Ducharme, A. (2003). Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: Insight from the studies of left ventricular dysfunction (SOLVD) trials. Circulation, 107(23), 2926–2931. https://doi.org/10.1161/01.CIR.0000072793.81076.D4
Google Scholar Wang, X., Li, Y., Li, Q. A. (2019). Comprehensive meta-analysis on relationship between CYP11B2 rs1799998 polymorphism and atrial fibrillation. Journal of Electrocardiology, 52, 101–105. https://doi.org/10.1016/j.jelectrocard.2018.11.009
Google Scholar Watanabe, H., Kaiser, D. W., Makino, S., MacRae, C. A., Ellinor, P. T., Wasserman, B. S., Kannankeril, P. J., Donahue, B. S., Roden, D. M., Darbar, D. (2009). ACE I/D polymorphism associated with abnormal atrial and atrioventricular conduction in lone atrial fibrillation and structural heart disease: Implications for electrical remodeling. Heart Rhythm, 6(9), 1327–1332. https://doi.org/10.1016/j.hrthm.2009.05.014
Google Scholar Weber, K. T., Brilla, C. G., Campbell, S. E., Guarda, E., Zhou, G., Sriram, K. (1993). Myocardial fibrosis: Role of angiotensin II and aldosterone. Basic Research in Cardiology, 88(1), 107–124. https://doi.org/10.1007/978-3-642-72497-8_8
Google Scholar Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E, Collins, K. J., Denninson Himmelfarb, C., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Munter, P., Ovbiagele, B., Smith, S. C, Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A…Wright, J. T. (2018). 2017 ACC/AHA/AAPA/ABC/ ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Journal of the American College of Cardiology, 71(19), e127–e248. https://doi.org/10.1016/j.jacc.2017.11.006
Google Scholar Wolf, P. A., Abbott, R. D., Kannel, W. B. (1991). Atrial fibrillation as an independent risk factor for stroke: The framingham study. Stroke, 22(8), 983–988. https://doi.org/10.1161/01.str.22.8.983
Google Scholar World Health Organization . (2006). Guidelines for the prevention, management and care of diabetes mellitus. https://apps.who.int/iris/handle/10665/119799
Google Scholar Yamashita, T., Hayami, N., Ajiki, K., Oikawa, N., Sezaki, K., Inoue, M., Omata, M., Murakawa, Y. (1997). Is ACE gene polymorphism associated with lone atrial fibrillation? Japanese Heart Journal, 38(5), 637–641. https://doi.org/10.1536/ihj.38.637
Google Scholar Yongjun, Q., Huanzhang, S., Wenxia, Z., Hong, T., Xijun, X. (2015). From changes in local RAAS to structural remodeling of the left atrium: A beautiful cycle in atrial fibrillation. Herz, 40(3), 514–520. https://doi.org/10.1007/s00059-013-4032-7
Google Scholar Zhang, X. L., Wu, L. Q., Liu, X., Yang, Y. Q., Tan, H. W., Wang, X. H., Zhou, L., Jiang, W. F., Li, Z. (2012). Association of angiotensin converting enzyme gene I/D and CYP11B2 gene 344T/C polymorphisms with lone atrial fibrillation and its recurrence after catheter ablation. Experimental and Therapeutic Medicine, 4(4), 741–747. https://doi.org/10.3892/etm.2012.650
Google Scholar Zhao, J., Li, J., Li, W., Li, Y., Shan, H., Gong, Y., Ya

Comments (0)

No login
gif